Visual cues affect how data are perceived

Here's a recent NYT graphic showing California's water situation at different time scales (link to article).

Nyt_california_drought

It's a small multiples display, showing the spatial distribution of the precipitation amounts in California. The two panels show, respectively, the short-term view (past month) and the longer-term view (3 years). Precipitation is measured in relative terms,  so what is plotted is the relative ratio of precipitation in the reference period, with 100 being the 30-year average.

Green is much wetter than average while brown is much drier than average.

The key to making this chart work is a common color scheme across the two panels.

Also, the placement of major cities provides anchor points for our eyes to move back and forth between the two panels.

***

The NYT graphic is technically well executed. I'm a bit unhappy with the headline: "Recent rains haven't erased California's long-term drought".

At the surface, the conclusion seems sensible. Look, there is a lot of green, even deep green, on the left panel, which means the state got lots more rain than usual in the past month. Now, on the right panel, we find patches of brown, and very little green.

But pay attention to the scale. The light brown color, which covers the largest area, has value 70 to 90, thus, these regions have gotten 10-30% less precipitation than average in the past three years relative to the 30-year average.

Here's the question: what does it mean by "erasing California's long-term drought"? Does the 3-year average have to equal or exceed the 30-year average? Why should that be the case?

If we took all 3-year windows within those 30 years, we're definitely not going to find that each such 3-year average falls at or above the 30-year average. To illustrate this, I pulled annual rainfall data for San Francisco. Here is a histogram of 3-year averages for the 30-year period 1991-2020.

Redo_nyt_californiadrought_sfrainfall

For example, the first value is the average rainfall for years 1989, 1990 and 1991, the next value is the average of 1990, 1991, and 1992, and so on. Each value is a relative value relative to the overall average in the 30-year window. There are two more values beyond 2020 that is not shown in the histogram. These are 57%, and 61%, so against the 30-year average, those two 3-year averages were drier than usual.

The above shows the underlying variability of the 3-year averages inside the reference time window. We have to first define "normal", and that might be a value between 70% and 130%.

In the same way, we can establish the "normal" range for the entire state of California. If it's also 70% to 130%, then the last 3 years as shown in the map above should be considered normal.

 

 


Longest life, shortest length

Racetrack charts refuse to die. For old time's sake, here is a blog post from 2005 in which I explain why they don't make good dataviz.

Our latest example comes from Visual Capitalist (link), which publishes a fair share of nice dataviz. In this infographics, they feature a racetrack chart, just because the topic is the lifespan of cars.

Visualcapitalist_lifespan_cars_top

The whole infographic has four parts, each a racetrack chart. I'll focus on the first racetrack chart (shown above), which deals with the product category of sedans and hatchbacks.

The first thing I noticed is the reference value of 100,000 miles, which is described as the expected lifespan of a typical car made in the 1970s. This is of dubious value since the top of the page informs us the current relevant reference value is 200,000 miles, which is unlabeled. We surmise that 200,000 miles is indicated by the end of the grey sections of the racetrack. (This is eventually confirmed in the next racettrack chart for SUVs in the second sectiotn of the infographic.)

Now let's zoom in on the brown section of the track. Each of the four sections illustrates the same datum = 100,000 miles and yet they exhibit different lengths. From this, we learn that the data are not encoded in the lengths of these tracks -- but rather the data are to be found in the angle sustained at the centre of the concentric circles. The problem with racetrack charts is that readers are drawn to the lengths of the tracks rather than the angles at the center, which are not explicitly represented.

The Avalon model has the longest life span on this chart, and yet it is shown as the shortest curve.

***

The most baffling part of this chart is not the visual but the analysis methodology.

I quote:

iSeeCars analyzed over 2M used cars on the road between Jan. and Oct. 2022. Rankings are based on the mileage that the top 1% of cars within each model obtained.

According to this blurb, the 245,710 miles number for Avalon is the average mileage found in the top 1% of Avalons within the iSeeCars sample of 2M used cars.

The word "lifespan" strikes me as incorporating a date of death, and yet nothing in the above text indicates that any of the sampled cars are at end of life. The cars they really need are not found in their sample at all.

I suppose taking the top 1% is meant to exclude younger cars but why 1%? Also, this sample completely misses the cars that prematurely died, e.g. the cars that failed after 100,000 miles but before 200,000 miles. This filtering also ensures that newer models are excluded from the sample.

_trifectacheckup_imageIn the Trifecta Checkup, this qualifies as Type DV. The dataset does not answer the question of concern while the visual form distorts the data.


The blue mist

The New York Times printed several charts about Twitter "blue checks," and they aren't one of their best efforts (link).

Blue checks used to be credentials given to legitimate accounts, typically associated with media outlets, celebrities, brands, professors, etc. They are free but must be approved by Twitter. Since Elon Musk acquired Twitter, he turned blue checks into a revenue generator. Yet another subscription service (but you're buying "freedom"!). Anyone can get a blue check for US$8 per month.

[The charts shown here are scanned from the printed edition.]

Nyt_twitterblue_chart1

The first chart is a scatter plot showing the day of joining Twitter and the total number of followers the account has as of early November, 2022. Those are very strange things to pair up on a scatter plot but I get it: the designer could only work with the data that can be pulled down from Twitter's API.

What's wrong with the data? It would seem the interesting question is whether blue checks are associated with number of followers. The chart shows only Twitter Blue users so there is nothing to compare to. The day of joining Twitter is not the day of becoming "Twitter Blue", almost surely not for any user (Nevetheless, the former is not a standard data element released by Twitter). The chart has a built-in time bias since the longer an account exists, one would assume the higher the number of followers (assuming all else equal). Some kind of follower rate (e.g. number of followers per year of existence) might be more informative.

Still, it's hard to know what the chart is saying. That most Blue accounts have fewer than 5,000 followers? I also suspect that they chopped off the top of the chart (outliers) and forgot to mention it. Surely, some of the celebrity accounts have way over 150,000 followers. Another sign that the top of the chart was removed is that an expected funnel effect is not seen. Given the follower count is cumulative from the day of registration, we'd expect the accounts that started in the last few months should have markedly lower counts than those created years ago. (This is even more true if there is a survivorship bias - less successful accounts are more likely to be deleted over time.)

The designer arbitrarily labelled six specific accounts ("Crypto influencer", "HBO fan", etc.) but this feature risks sending readers the wrong message. There might be one HBO fan account that quickly grew to 150,000 followers in just a few months but does the data label suggest to readers that HBO fan accounts as a group tend to quickly attain high number of followers?

***

The second chart, which is an inset of the first, attempts to quantify the effect of the Musk acquisition on the number of "registrations and subscriptions". In the first chart, the story was described as "Elon Musk buys Twitter sparking waves of new users who later sign up for Twitter Blue".

Nyt_twitterblue_chart2

The second chart confuses me. I was trying to figure out what is counted in the vertical axis. This was before I noticed the inset in the first chart, easy to miss as it is tucked into the lower right corner. I had presumed that the axis would be the same as in the first chart since there weren't any specific labels. In that case, I am looking at accounts with 0 to 500 followers, pretty inconsequential accounts. Then, the chart title uses the words "registrations and subscriptions." If the blue dots on this chart also refer to blue-check accounts as in the first chart, then I fail to see how this chart conveys any information about registrations (wbich presumably would include free accounts). As before, new accounts that aren't blue checks won't appear.

Further, to the extent that this chart shows a surge in subscriptions, we are restricted to accounts with fewer than 500 followers, and it's really unclear what proportion of total subscribers is depicted. Nor is it possible to estimate the magnitude of this surge.

Besides, I'm seeing similar densities of the dots across the entire time window between October 2021 and 2022. Perhaps the entire surge is hidden behind the black lines indicating the specific days when Musk announced and completed the acquisition, respectively. If the surge is hiding behind the black vertical lines, then this design manages to block the precise spots readers are supposed to notice.

Here is where we can use the self-sufficiency test. Imagine the same chart without the text. What story would you have learned from the graphical elements themselves? Not much, in my view.

***

The third chart isn't more insightful. This chart purportedly shows suspended accounts, only among blue-check accounts.

Nyt_twitterblue_chart3

From what I could gather (and what I know about Twitter's API), the chart shows any Twitter Blue account that got suspended at any time. For example, all the black open circles occurring prior to October 27, 2022 represent suspensions by the previous management, and presumably have nothing to do with Elon Musk, or his decision to turn blue checks into a subscription product.

There appears to be a cluster of suspensions since Musk took over. I am not sure what that means. Certainly, it says he's not about "total freedom". Most of these suspended accounts have fewer than 50 followers, and only been around for a few weeks. And as before, I'm not sure why the analyst decided to focus on accounts with fewer than 500 followers.

What could have been? Given the number of suspended accounts are relatively small, an interesting analysis would be to form clusters of suspended accounts, and report on the change in what types of accounts got suspended before and after the change of management.

***

The online article (link) is longer, filling in some details missing from the printed edition.

There is one view that shows the larger accounts:

Nyt_twitterblue_largestaccounts

While more complete, this view isn't very helpful as the biggest accounts are located in the sparsest area of the chart. The data labels again pick out strange accounts like those of adult film stars and an Arabic news site. It's not clear if the designer is trying to tell us that most of Twitter Blue accounts belong to those categories.

***
See here for commentary on other New York Times graphics.

 

 

 

 


Painting the corner

Found an old one sitting in my folder. This came from the Wall Street Journal in 2018.

At first glance, the chart looks like a pretty decent effort.

The scatter plot shows Ebitda against market value, both measured in billions of dollars. The placement of the vertical axis title on the far side is a little unusual.

Ebitda is a measure of business profit (something for a different post on the sister blog: the "b" in Ebitda means "before", and allows management to paint a picture of profits without accounting for the entire cost of running the business). In the financial markets, the market value is claimed to represent a "fair" assessment of the value of the business. The ratio of the market value to Ebitda is known as the "Ebitda multiple", which describes the number of dollars the "market" places on each dollar of Ebitda profit earned by the company.

Almost all scatter plots suffer from xyopia: the chart form encourages readers to take an overly simplistic view in which the market cares about one and only one business metric (Ebitda). The reality is that the market value contains information about Ebitda plus lots of other factors, such as competitors, growth potential, etc.

Consider Alphabet vs AT&T. On this chart, both companies have about $50 billion in Ebitda profits. However, the market value of Alphabet (Google's mother company) is about four times higher than that of AT&T. This excess valuation has nothing to do with profitability but partly explained by the market's view that Google has greater growth potential.

***

Unusually, the desginer chose not to utilize the log scale. The right side of the following display is the same chart with a log horizontal axis.

The big market values are artificially pulled into the middle while the small values are plied apart. As one reads from left to right, the same amount of distance represents more and more dollars. While all data visualization books love log scales, I am not a big fan of it. That's because the human brain doesn't process spatial information this way. We don't tend to think in terms of continuously evolving scales. Thus, presenting the log view causes readers to underestimate large values and overestimate small differences.

Now let's get to the main interest of this chart. Notice the bar chart shown on the top right, which by itself is very strange. The colors of the bar chart is coordinated with those on the scatter plot, as the colors divide the companies into two groups; "media" companies (old, red), and tech companies (new, orange).

Scratch that. Netflix is found in the scatter plot but with a red color while AT&T and Verizon appear on the scatter plot as orange dots. So it appears that the colors mean different things on different plots. As far as I could tell, on the scatter plot, the orange dots are companies with over $30 billion in Ebitda profits.

At this point, you may have noticed the stray orange dot. Look carefully at the top right corner, above the bar chart, and you'll find the orange dot representing Apple. It is by far the most important datum, the company that has the greatest market value and the largest Ebitda.

I'm not sure burying Apple in the corner was a feature or a bug. It really makes little sense to insert the bar chart where it is, creating a gulf between Apple and the rest of the companies. This placement draws the most attention away from the datum that demands the most attention.

 

 

 


Finding the right context to interpret household energy data

Bloomberg_energybillBloomberg's recent article on surging UK household energy costs, projected over this winter, contains data about which I have long been intrigued: how much energy does different household items consume?

A twitter follower alerted me to this chart, and she found it informative.

***
If the goal is to pick out the appliances and estimate the cost of running them, the chart serves its purpose. Because the entire set of data is printed, a data table would have done equally well.

I learned that the mobile phone costs almost nothing to charge: 1 pence for six hours of charging, which is deemed a "single use" which seems double what a full charge requires. The games console costs 14 pence for a "single use" of two hours. That might be an underestimate of how much time gamers spend gaming each day.

***

Understanding the design of the chart needs a bit more effort. Each appliance is measured by two metrics: the number of hours considered to be "single use", and a currency value.

It took me a while to figure out how to interpret these currency values. Each cost is associated with a single use, and the duration of a single use increases as we move down the list of appliances. Since the designer assumes a fixed cost of electicity (shown in the footnote as 34p per kWh), at first, it seems like the costs should just increase from top to bottom. That's not the case, though.

Something else is driving these numbers behind the scene, namely, the intensity of energy use by appliance. The wifi router listed at the bottom is turned on 24 hours a day, and the daily cost of running it is just 6p. Meanwhile, running the fridge and freezer the whole day costs 41p. Thus, the fridge&freezer consumes electricity at a rate that is almost 7 times higher than the router.

The chart uses a split axis, which artificially reduces the gap between 8 hours and 24 hours. Here is another look at the bottom of the chart:

Bloomberg_energycost_bottom

***

Let's examine the choice of "single use" as a common basis for comparing appliances. Consider this:

  • Continuous appliances (wifi router, refrigerator, etc.) are denoted as 24 hours, so a daily time window is also implied
  • Repeated-use appliances (e.g. coffee maker, kettle) may be run multiple times a day
  • Infrequent use appliances may be used less than once a day

I prefer standardizing to a "per day" metric. If I use the microwave three times a day, the daily cost is 3 x 3p = 9 p, which is more than I'd spend on the wifi router, run 24 hours. On the other hand, I use the washing machine once a week, so the frequency is 1/7, and the effective daily cost is 1/7 x 36 p = 5p, notably lower than using the microwave.

The choice of metric has key implications on the appearance of the chart. The bubble size encodes the relative energy costs. The biggest bubbles are in the heating category, which is no surprise. The next largest bubbles are tumble dryer, dishwasher, and electric oven. These are generally not used every day so the "per day" calculation would push them lower in rank.

***

Another noteworthy feature of the Bloomberg chart is the split legend. The colors divide appliances into five groups based on usage category (e.g. cleaning, food, utility). Instead of the usual color legend printed on a corner or side of the chart, the designer spreads the category labels around the chart. Each label is shown the first time a specific usage category appears on the chart. There is a presumption that the reader scans from top to bottom, which is probably true on average.

I like this arrangement as it delivers information to the reader when it's needed.

 

 

 


People flooded this chart presented without comment with lots of comments

The recent election in Italy has resulted in some dubious visual analytics. A reader sent me this Excel chart:

Italy_elections_RDC-M5S

In brief, an Italian politician (trained as a PhD economist) used the graph above to make a point that support of the populist Five Star party (M5S) is highly correlated with poverty - the number of people on RDC (basic income). "Senza commento" - no comment needed.

Except a lot of people noticed the idiocy of the chart, and ridiculed it.

The chart appeals to those readers who don't spend time understanding what's being plotted. They notice two lines that show similar "trends" which is a signal for high correlation.

It turns out the signal in the chart isn't found in the peaks and valleys of the "trends".  It is tempting to observe that when the blue line peaks (Campania, Sicilia, Lazio, Piedmonte, Lombardia), the orange line also pops.

But look at the vertical axis. He's plotting the number of people, rather than the proportion of people. Population varies widely between Italian provinces. The five mentioned above all have over 4 million residents, while the smaller ones such as Umbira, Molise, and Basilicata have under 1 million. Thus, so long as the number of people, not the proportion, is plotted, no matter what demographic metric is highlighted, we will see peaks in the most populous provinces.

***

The other issue with this line chart is that the "peaks" are completely contrived. That's because the items on the horizontal axis do not admit a natural order. This is NOT a time-series chart, for which there is a canonical order. The horizontal axis contains a set of provinces, which can be ordered in whatever way the designer wants.

The following shows how the appearance of the lines changes as I select different metrics by which to sort the provinces:

Redo_italianelections_m5srdc_1

This is the reason why many chart purists frown on people who use connected lines with categorical data. I don't like this hard rule, as my readers know. In this case, I have to agree the line chart is not appropriate.

***

So, where is the signal on the line chart? It's in the ratio of the heights of the two values for each province.

Redo_italianelections_m5srdc_2

Here, we find something counter-intuitive. I've highlighted two of the peaks. In Sicilia, about the same number of people voted for Five Star as there are people who receive basic income. In Lombardia, more than twice the number of people voted for Five Star as there are people who receive basic income. 

Now, Lombardy is where Milan is, essentially the richest province in Italy while Sicily is one of the poorest. Could it be that Five Star actually outperformed their demographics in the richer provinces?

***

Let's approach the politician's question systematically. He's trying to say that the Five Star moement appeals especially to poorer people. He's chosen basic income as a proxy for poverty (this is like people on welfare in the U.S.). Thus, he's divided the population into two groups: those on welfare, and those not.

What he needs is the relative proportions of votes for Five Star among these two subgroups. Say, Five Star garnered 30% of the votes among people on welfare, and 15% of the votes among people not on welfare, then we have a piece of evidence that Five Star differentially appeals to people on welfare. If the vote share is the same among these two subgroups, then Five Star's appeal does not vary with welfare.

The following diagram shows the analytical framework:

Redo_italianelections_m5srdc_3

What's the problem? He doesn't have the data needed to establish his thesis. He has the total number of Five Star voters (which is the sum of the two yellow boxes) and he has the total number of people on RDC (which is the dark orange box).

Redo_italianelections_m5srdc_4

As shown above, another intervening factor is the proportion of people who voted. It is conceivable that the propensity to vote also depends on one's wealth.

So, in this case, fixing the visual will not fix the problem. Finding better data is key.


Another reminder that aggregate trends hide information

The last time I looked at the U.S. employment situation, it was during the pandemic. The data revealed the deep flaws of the so-called "not in labor force" classification. This classification is used to dehumanize unemployed people who are declared "not in labor force," in which case they are neither employed nor unemployed -- just not counted at all in the official unemployment (or employment) statistics.

The reason given for such a designation was that some people just have no interest in working, or even looking for a job. Now they are not merely discouraged - as there is a category of those people. In theory, these people haven't been looking for a job for so long that they are no longer visible to the bean counters at the Bureau of Labor Statistics.

What happened when the pandemic precipitated a shutdown in many major cities across America? The number of "not in labor force" shot up instantly, literally within a few weeks. That makes a mockery of the reason for such a designation. See this post for more.

***

The data we saw last time was up to April, 2020. That's more than two years old.

So I have updated the charts to show what has happened in the last couple of years.

Here is the overall picture.

Junkcharts_unemployment_notinLFparttime_all_2

In this new version, I centered the chart at the 1990 data. The chart features two key drivers of the headline unemployment rate - the proportion of people designated "invisible", and the proportion of those who are considered "employed" who are "part-time" workers.

The last two recessions have caused structural changes to the labor market. From 1990 to late 2000s, which included the dot-com bust, these two metrics circulated within a small area of the chart. The Great Recession of late 2000s led to a huge jump in the proportion called "invisible". It also pushed the proportion of part-timers to all0time highs. The proportion of part-timers has fallen although it is hard to interpret from this chart alone - because if the newly invisible were previously part-time employed, then the same cause can be responsible for either trend.

_numbersense_bookcoverReaders of Numbersense (link) might be reminded of a trick used by school deans to pump up their US News rankings. Some schools accept lots of transfer students. This subpopulation is invisible to the US News statisticians since they do not factor into the rankings. The recent scandal at Columbia University also involves reclassifying students (see this post).

Zooming in on the last two years. It appears that the pandemic-related unemployment situation has reversed.

***

Let's split the data by gender.

American men have been stuck in a negative spiral since the 1990s. With each recession, a higher proportion of men are designated BLS invisibles.

Junkcharts_unemployment_notinLFparttime_men_2

In the grid system set up in this scatter plot, the top right corner is the worse of all worlds - the work force has shrunken and there are more part-timers among those counted as employed. The U.S. men are not exiting this quadrant any time soon.

***
What about the women?

Junkcharts_unemployment_notinLFparttime_women_2

If we compare 1990 with 2022, the story is not bad. The female work force is gradually reaching the same scale as in 1990 while the proportion of part-time workers have declined.

However, celebrating the above is to ignore the tremendous gains American women made in the 1990s and 2000s. In 1990, only 58% of women are considered part of the work force - the other 42% are not working but they are not counted as unemployed. By 2000, the female work force has expanded to include about 60% with similar proportions counted as part-time employed as in 1990. That's great news.

The Great Recession of the late 2000s changed that picture. Just like men, many women became invisible to BLS. The invisible proportion reached 44% in 2015 and have not returned to anywhere near the 2000 level. Fewer women are counted as part-time employed; as I said above, it's hard to tell whether this is because the women exiting the work force previously worked part-time.

***

The color of the dots in all charts are determined by the headline unemployment number. Blue represents low unemployment. During the 1990-2022 period, there are three moments in which unemployment is reported as 4 percent or lower. These charts are intended to show that an aggregate statistic hides a lot of information. The three times at which unemployment rate reached historic lows represent three very different situations, if one were to consider the sizes of the work force and the number of part-time workers.

 

P.S. [8-15-2022] Some more background about the visualization can be found in prior posts on the blog: here is the introduction, and here's one that breaks it down by race. Chapter 6 of Numbersense (link) gets into the details of how unemployment rate is computed, and the implications of the choices BLS made.

P.S. [8-16-2022] Corrected the axis title on the charts (see comment below). Also, added source of data label.


Dataviz is good at comparisons if we make the right comparisons

In an article about gas prices around the world, the Washington Post uses the following bar chart (link):

Wpost_gasprices_highincome

There are a few wrinkles in this one compared to the most generic bar chart one can produce:

Redo_wpost_gasprices_0

(The numbers on my chart are not the same as Washington Post's. That's because the data vendor charges for data, except for the most recent week. So, my data is from a different week.)

_trifectacheckup_imageThe gas prices are not expressed in dollars but a transformation turns prices into a cost-effectiveness metric: miles per dollar, or more precisely, miles per $40 dollars of gas. The metric has a reverse direction - the higher the price, the lower the miles. The data transformation belongs to the D corner of the Trifecta Checkup framework (link). Depending on how one poses the Q(uestion) of the chart, the shift from dollars to miles can bring the Q and the D in sync.

In the V(isual) corner, the designer embellishes the bars. A car icon is placed at the tip of each bar while the bar itself is turned into a wavy path, symbolizing a dirt path. The driving metaphor is in full play. In fact, the video makes the most out of it. There is no doubt that the embellishment has turned a mere scientific presentation into a form of entertainment.

***

Did the embellishment harm visual clarity? For the most part, no.

The worst it can get is when they compared U.S. and India/South Africa:

Redo_wpost_gasprices_indiasouthafrica

The left column shows the original charts from the article. In  both charts, the two cars are so close together that it is impossible to learn the scale of the difference. The amount of difference is a fraction of the width of a car icon.

The right column shows the "self-sufficiency test". Imagine the data labels are not on the chart. What we learn is that if we wanted to know how big of a gap is between the two countries, when reading the charts on the left, we are relying on the data labels, not the visual elements. On the right side, if we really want to learn the gaps, we have to look through the car icons to find the tips of the bars!

This discussion does not necessarily doom the appealing chart. If the message one wants to send with the India/South Afrcia charts is that there is negligible difference between them, then it is not crucial to present the precise differences in prices.

***

The real problem with this dataviz is in the D corner. Comparing countries is hard.

As shown above, by the miles per $40 spend metric, U.S. and India are rated essentially the same. So is the average American and the average Indian suffering equally?

Far from it. The clue comes from the aggregate chart, in which countries are divided into three tiers: high income, upper middle income and lower middle income. The U.S. belongs to the high-income tier while India falls into the lower-middle-income tier.

The cost of living in India is much lower than in the US. Forty dollars is a much bigger chunk of an Indian paycheck than an American one.

To adjust for cost of living, economists use a PPP (purchasing power parity) value. The following chart shows the difference:

Redo_wpost_gasprices_1

The right graph contains cost-of-living adjustments. It shows a completely different picture. Nominally (left chart), the price of gas in about the same in dollar terms between U.S. and India. In terms of cost of living, gas is actually 5 times more expensive in India. Thus, the adjusted miles per $40 gas number is much smaller for India than the unadjusted. (Because PPP is relative to U.S. prices, the U.S. numbers are not affected.)

PPP is not the end-all here. According to the Economic Times (India), only 22 out of 1,000 Indians own cars, compared to 980 out of 1,000 Americans. Think about the implication of using any statistic that averages the entire population!

***

Why is gas more expensive in California than the U.S. average? The talking point I keep hearing is environmental regulations. Gas prices may be higher in Europe for a similar reason. Residents in those places may be willing to pay higher prices because they get satisfaction from playing their part in preserving the planet for future generations.

The footnote discloses this not-trivial issue.

Wpost_gasprices_footnote

When converting from dollars per gallon/liter into miles per $40, we need data on miles per gallon/liter. Americans notoriously drive cars (trucks, SUVs, etc.) that have much lower mileage than those driven by other countries. However, this factor is artificially removed by assuming the same car with 32 mpg on all countries. A quick hop to the BTS website tells us that the average mpg of American cars is a third of that assumption. [See note below.]

Ignoring cross-country comparisons for the time being, the true number for U.S. is not 247 miles per $40 spent on gas as claimed. It is a third of that value: 82 miles per $40 spent.

It's tough to find data on fuel economy of all passenger cars, not just new passenger cars. I found Australia's number, which is 21 mpg. So this brings the miles per $40 number down from about 230 to 115. These are not small adjustments.

Washington Post's analysis paints a simplistic picture that presupposes that price is the only thing people care about. I call this issue xyopia. It's when the analyst frames the problem as factor x explaining outcome y, and when factor x is not the only, and frequently not even the most important, factor affecting y.

More on xyopia.

More discussion of Washington Post graphics.

 

[P.S. 7-25-2022. Reader Cody Curtis pointed out in the comments that the Bureau of Transportation Statistics report was using km/liter as units, not miles per gallon. The 10 km/liter number for average cars is roughly 23 mpg. I'll leave the text as is in the post as the larger point is valid: that there is variation in average fuel economy between nations - partly due to environemental regulation and consumer behavior - and thus, a proper comparison requires adjusting for this factor.]


Selecting the right analysis plan is the first step to good dataviz

It's a new term, and my friend Ray Vella shared some student projects from his NYU class on infographics. There's always something to learn from these projects.

The starting point is a chart published in the Economist a few years ago.

Economist_richgetricher

This is a challenging chart to read. To save you the time, the following key points are pertinent:

a) income inequality is measured by the disparity between regional averages

b) the incomes are given in a double index, a relative measure. For each country and year combination, the average national GDP is set to 100. A value of 150 means the richest region of Spain has an average income that is 50% higher than Spain's national average in the year 2015.

The original chart - as well as most of the student work - is based on a specific analysis plan. The difference in the index values between the richest and poorest regions is used as a measure of the degree of income inequality, and the change in the difference in the index values over time, as a measure of change in the degree of income inequality over time. That's as big a mouthful as the bag of words sounds.

This analysis plan can be summarized as:

1) all incomes -> relative indices, at each region-year combination
2) inequality = rich - poor region gap, at each region-year combination
3) inequality over time = inequality in 2015 - inequality in 2000, for each country
4) country difference = inequality in country A - inequality in country B, for each year

***

One student, J. Harrington, looks at the data through an alternative lens that brings clarity to the underlying data. Harrington starts with change in income within the richest regions (then the poorest regions), so that a worsening income inequality should imply that the richest region is growing incomes at a faster clip than the poorest region.

This alternative analysis plan can be summarized as:
1) change in income over time for richest regions for each country
2) change in income over time for poorest regions for each country
3) inequality = change in income over time: rich - poor, for each country

The restructuring of the analysis plan makes a big difference!

Here is one way to show this alternative analysis:

Junkcharts_kfung_sixeurocountries_gdppercapita

The underlying data have not changed but the reader's experience is transformed.


Superb tile map offering multiple avenues for exploration

Here's a beauty by WSJ Graphics:

Wsj_powerproduction

The article is here.

This data graphic illustrates the power of the visual medium. The underlying dataset is complex: power production by type of source by state by month by year. That's more than 90,000 numbers. They all reside on this graphic.

Readers amazingly make sense of all these numbers without much effort.

It starts with the summary chart on top.

Wsj_powerproduction_us_summary

The designer made decisions. The data are presented in relative terms, as proportion of total power production. Only the first and last years are labeled, thus drawing our attention to the long-term trend. The order of the color blocks is carefully selected so that the cleaner sources are listed at the top and the dirtier sources at the bottom. The order of the legend labels mirrors the color blocks in the area chart.

It takes only a few seconds to learn that U.S. power production has largely shifted away from coal with most of it substituted by natural gas. Other than wind, the green sources of power have not gained much ground during these years - in a relative sense.

This summary chart serves as a reading guide for the rest of the chart, which is a tile map of all fifty states. Embedded in the tile map is a small-multiples arrangement.

***

The map offers multiple avenues for exploration.

Some readers may look at specific states. For example, California.

Wsj_powerproduction_california

Currently, about half of the power production in California come from natural gas. Notably, there is no coal at all in any of these years. In addition to wind, solar energy has also gained. All of these insights come without the need for any labels or gridlines!

Wsj_powerproduction_westernstatesBrowsing around California, readers find different patterns in other Western states like Oregon and Washington.

Hydroelectric energy is the dominant source in those two states, with wind gradually taking share.

At this point, readers realize that the summary chart up top hides remarkable state-level variations.

***

There are other paths through the map.

Some readers may scan the whole map, seeking patterns that pop out.

One such pattern is the cluster of states that use coal. In most of these states, the proportion of coal has declined.

Yet another path exists for those interested in specific sources of power.

For example, the trend in nuclear power usage is easily followed by tracking the purple. South Carolina, Illinois and New Hampshire are three states that rely on nuclear for more than half of its power.

Wsj_powerproduction_vermontI wonder what happened in Vermont about 8 years ago.

The chart says they renounced nuclear energy. Here is some history. This one-time event caused a disruption in the time series, unique on the entire map.

***

This work is wonderful. Enjoy it!