Illustrating coronavirus waves with moving images

The New York Times put out a master class in visualizing space and time data recently, in a visualization of five waves of Covid-19 that have torched the U.S. thus far (link).

Nyt_coronawaves_title

The project displays one dataset using three designs, which provides an opportunity to compare and contrast them.

***

The first design - above the headline - is an animated choropleth map. This is a straightforward presentation of space and time data. The level of cases in each county is indicated by color, dividing the country into 12 levels (plus unknown). Time is run forward. The time legend plays double duty as a line chart that shows the change in the weekly rate of reported cases over the course of the pandemic. A small piece of interactivity binds the legend with the map.

Nyt_coronawaves_moviefront

(To see a screen recording of the animation, click on the image above.)

***

The second design comprises six panels, snapshots that capture crucial "turning points" during the Covid-19 pandemic. The color of each county now encodes an average case rate (I hope they didn't just average the daily rates). 

Nyt_coronawaves_panelsix

The line-chart legend is gone -  it's not hard to see Winter > Fall 2020 > Summer/Fall 2021 >... so I don't think it's a big loss.

The small-multiples setup is particularly effective at facilitating comparisons: across time, and across space. It presents a story in pictures.

They may have left off 2020 following "Winter" because December to February spans both years but "Winter 2020" may do more benefit than harm here.

***

The third design is a series of short films, which stands mid-way between the single animated map and the six snapshots. Each movie covers a separate window of time.

This design does a better job telling the story within each time window while it obstructs comparisons across time windows.

Nyt_coronawaves_shortfilms

The informative legend is back. This time, it's showing the static time window for each map.

***

The three designs come from the same dataset. I think of them as one long movie, six snapshots, and five short films.

The one long movie is a like a data dump. It shows every number in the dataset, which is the weekly case rate for each county for a given week. All the data are streamed into a single map. It's a show piece.

As an instrument to help readers understand the patterns in the dataset, the movie falls short. Too much is going on, making it hard to focus and pick out key trends. When your eyes are everywhere, they are nowhere.

The six snapshots represent the other extreme. The graph does not move, as the time axis is reduced to six discrete time points. But this display describes the change points, and tells a story. The long movie, by contrast, invites readers to find a story.

Without motion, the small-multiples format allows us to pick out specific counties or regions and compare the case rates across time. This task is close to impossible in the long movie, as it requires freezing the movie, and jumping back and forth.

The five short films may be the best of both worlds. It retains the motion. If the time windows are chosen wisely, each short film contains a few simple patterns that can easily be discerned. For example, the third film shows how the winter wave emerged from the midwest and then walloped the whole country, spreading southward and toward the coasts.

Nyt_winterwave

(If the above gif doesn't play, click it.)

***

If there is double or triple the time allocated to this project, I'd want to explore spatial clustering. I'd like to dampen the spatial noise (neighboring counties that have slightly different experiences). There is also temporal noise (fluctuations from week to week for the same county) - which can be smoothed away. I think with these statistical techniques, the "wave" feature of the pandemic may be more visible.

 

 


The gift of small edits and subtraction

While making the chart on fertility rates (link), I came across a problem that pops up quite often, and is  ignored by most software programs.

Here is an earlier version of the chart I later discarded:

Junkcharts_redofertilitychart_2

Compare this to the version I published in the blog post:

Junkcharts_redofertilitychart_1

Aside from adding the chart title, there is one major change. I removed the empty plots from the grid. This is a visualization trick that should be called adding by subtracting. The empty scaffolding on the first chart increases our cognitive load without yielding any benefit. The whitespace brings out the message that only countries in Asia and Africa have fertility rates above 5.0. 

This is a small edit. But small edits accumulate and deliver a big impact. Bear this in mind the next time you make a chart.

 

P.S.

(1) You'd have to use a lower-level coding language to execute this small edit. Most software programs are quite rigid when it comes to making small-multiples (facet) charts.

(2) If there is a next iteration, I'd reverse the Asia and Oceania rows.

 


Visualizing fertility rates around the globe

The following chart dropped on my Twitter feed.

Twitter_fertility_chart

It's an ambitious chart that tries to do a lot. The underlying data set contains fertility rate data from over 200 countries over 20 years.

The basic chart form is a column chart that is curled up into a ball. The column chart is given colors that map to continents. All countries are grouped into five continents. The column chart can only take a single data series, so the 2019 fertility rate is chosen.

Beyond this basic setup, the designer embellishes the chart with a trove of information. Here's a close up:

Twitter_fertilityrate_excerpt

The first number is the 2019 fertility rate, which means all the data encoded into the columns are also printed on the chart itself. Then, the flag of each country forms the next ring. Then, the name of the country. Finally, in brackets, the percent change in fertility rate between 2000 and 2019.

That is not all. Some contextual information are injected in those arrows that connect the columns to the data labels. A green arrow indicates that the fertility rate is trending lower - which is the case in most countries around the world. Once in a while, a purple arrow pops up. In the above excerpt, Seychelles gets a purple arrow because this island nation has increased the fertility rate from 2000 to 2019.

Also hiding in the background are several dashed rings. I think only the one that partially overlaps with the column chart contains any information - the other rings are inserted for an artistic reason. To decipher this dashed ring, we must look at the inset in the top left corner. We learn that the value of 2.1 children per woman is known as the replacement fertility rate. So it's also possible to assess whether each country is above or below the replacement fertility rate threshold.

Twitter_fertility_world_trend

[I'm presuming that this replacement threshold is about the births necessary to avoid a population decline. If that's the case, then comparing each country's fertility rate to a global fertility rate threshold is too simplistic because fertility is only one of several key factors driving a country's population growth. A more sophisticated model should generate country-level thresholds.]

***

Data graphics serve many functions. This chart works well as an embellished data table. It does take some time to find a specific country because the columns have been sorted by decreasing 2019 fertility rate but once we locate the column, all the other data fields are clearly laid out.

As a generator of data insights, this chart is less effective. The main insight I obtained from it is a rough ranking of continents, with African countries predominantly having higher fertility rates, followed by Asia and Oceania, then Americas, and finally, Europe which has the lowest fertility rates. If this is the key message, a standard choropleth map brings it out more directly.

***

Here is a small-multiples rendering of the fertility dataset. I chose 1999 values instead of 2000 to make a complete two-decade view.

Junkcharts_redofertilitychart_1

The columns represent a grouping of countries based on their 1999 fertility rates. The left column contains countries with the lowest number of births per woman, and the fertility rate increases left to right - both within an individual plot and in the grid.

If you're wondering, the hidden vertical axis sorts the countries by their 1999 rank. The lighter colors are 1999 values while the darker colors are 2019 values. For most countries the dots are shifting left over the 20 years. There are some exceptions. I have labeled several of these exceptions (e.g. Kazakhstan and Mongolia), and rendered them in italic.

 

 

 


Ridings, polls, elections, O Canada

Stephen Taylor reached out to me about his work to visualize Canadian elections data. I took a look. I appreciate the labor of love behind this project.

He led with a streamgraph, which presents a quick overview of relative party strengths over time.

Stephentaylor_canadianelections_streamgraph

I am no Canadian election expert, and I did a bare minimum of research in writing this blog. From this chart, I learn that:

  • the Canadians have an irregular election schedule
  • Canada has a two party plus breadcrumbs system
  • The two dominant parties are Liberals and Conservatives. The Liberals currently hold just less than half of the seats. The Conservatives have more than half of the seats not held by Liberals
  • The Conservative party (maybe) rebranded as "progressive conservative" for several decades. The Reform/Alliance party was (maybe) a splinter movement within the Conservatives as well.
  • Since the "width" of the entire stream increased over time, I'm guessing the number of seats has expanded

That's quite a bit of information obtained at a glance. This shows the power of data visualization. Notice Stephen didn't even have to include a "how to read this" box.

The streamgraph form has its limitations.

The feature that makes it more attractive than an area chart is its middle anchoring, resulting in a form of symmetry. The same feature produces erroneous intuition - the red patch draws out a declining trend; the reader must fight the urge to interpret the lines and focus on the areas.

The breadcrumbs are well hidden. The legend below discloses that the Green Party holds 3 seats currently. The party has never held enough seats to appear on the streamgraph though.

The bars showing proportions in the legend is a very nice touch. (The numbers appear messed up - I have to ask Stephen whether the seats shown are current values, or some kind of historical average.) I am a big fan of informative legends.

***

The next featured chart is a dot plot of polling results since 2020.

Stephentaylor_canadianelections_streamgraph_polls_dotplot

One can see a three-tier system: the two main parties, then the NDP (yellow) is the clear majority of the minority, and finally you have a host of parties that don't poll over 10%.

It looks like the polls are favoring the Conservatives over the Liberals in this election but it may be an election-day toss-up.

The purple dots represent "PPC" which is a party not found elsewhere on the page.

This chart is clear as crystal because of the structure of the underlying data. It just amazes me that the polls are so highly correlated. For example, across all these polls, the NDP has never once polled better than either the Liberals or the Conservatives, and in addition, it has never polled worse than any of the small parties.

What I'd like to see is a chart that merges the two datasets, addressing the question of how well these polls predicted the actual election outcomes.

***

The project goes very deep as Stephen provides charts for individual "ridings" (perhaps similar to U.S. precincts).

Here we see population pyramids for Vancouver Center, versus British Columbia (Province), versus Canada.

Stephentaylor_canadianelections_riding_populationpyramids

This riding has a large surplus of younger people in their twenties and thirties. Be careful about the changing scales though. The relative difference in proportions are more drastic than visually displayed because the maximum values (5%) on the Province and Canada charts are half that on the Riding chart (10%). Imagine squashing the Province and Canada charts to half their widths.

Analyses of income and rent/own status are also provided.

This part of the dashboard exhibits a problem common in most dashboards - they present each dimension of the data separately and miss out on the more interesting stuff: the correlation between dimensions. Do people in their twenties and thirties favor specific parties? Do richer people vote for certain parties?

***

The riding-level maps are the least polished part of the site. This is where I'm looking for a "how to read it" box.

Stephentaylor_canadianelections_ridingmaps_pollwinner

It took me a while to realize that the colors represent the parties. If I haven't come in from the front page, I'd have been totally lost.

Next, I got confused by the use of the word "poll". Clicking on any of the subdivisions bring up details of an actual race, with party colors, candidates and a donut chart showing proportions. The title gives a "poll id" and the name of the riding in parentheses. Since the poll id changes as I mouse over different subdivisions, I'm wondering whether a "poll" is the term for a subdivision of a riding. A quick wiki search indicates otherwise.

Stephentaylor_canadianelections_ridingmaps_donut

My best guess is the subdivisions are indicated by the numbers.

Back to the donut charts, I prefer a different sorting of the candidates. For this chart, the two most logical orderings are (a) order by overall popularity of the parties, fixed for all ridings and (b) order by popularity of the candidate, variable for each riding.

The map shown above gives the winner in each subdivision. This type of visualization dumps a lot of information. Stephen tackles this issue by offering a small multiples view of each party. Here is the Liberals in Vancouver.

Stephentaylor_canadianelections_ridingmaps_partystrength

Again, we encounter ambiguity about the color scheme. Liberals have been associated with a red color but we are faced with abundant yellow. After clicking on the other parties, you get the idea that he has switched to a divergent continuous color scale (red - yellow - green). Is red or green the higher value? (The answer is red.)

I'd suggest using a gray scale for these charts. The hardest decision is going to be the encoding between values and shading. Should each gray scale be different for each riding and each party?

If I were to take a guess, Stephen must have spent weeks if not months creating these maps (depending on whether he's full-time or part-time). What he has published here is a great start. Fine-tuning the issues I've mentioned may take more weeks or months more.

****

Stephen is brave and smart to send this project for review. For one thing, he's got some free consulting. More importantly, we should always send work around for feedback; other readers can tell us where our blind spots are.

To read more, start with this post by Stephen in which he introduces his project.


Tongue in cheek but a master stroke

Andrew jumped on the Benford bandwagon to do a tongue-in-cheek analysis of numbers in Hollywood movies (link). The key graphic is this:

Gelman_hollywood_benford_2-1024x683

Benford's Law is frequently invoked to prove (or disprove) fraud with numbers by examining the distribution of first digits. Andrew extracted movies that contain numbers in their names - mostly but not always sequences of movies with sequels. The above histogram (gray columns) are the number of movies with specific first digits. The red line is the expected number if Benford's Law holds. As typical of such analysis, the histogram is closely aligned with the red line, and therefore, he did not find any fraud. 

I'll blog about my reservations about Benford-style analysis on the book blog later - one quick point is: as with any statistical analysis, we should say there is no statistical evidence of fraud (more precisely, of the kind of fraud that can be discovered using Benford's Law), which is different from saying there is no fraud.

***

Andrew also showed a small-multiples chart that breaks up the above chart by movie groups. I excerpted the top left section of the chart below:

Gelman_smallmultiples_benford

The genius in this graphic is easily missed.

Notice that the red lines (which are the expected values if Benford Law holds) appear identical on every single plot. And then notice that the lines don't represent the same values.

It's great to have the red lines look the same everywhere because they represent the immutable Benford reference. Because the number of movies is so small, he's plotting counts instead of proportions. If you let the software decide on the best y-axis range for each plot, the red lines will look different on different charts!

You can find the trick in the R code from Gelman's blog.

First, the maximum value of each plot is set to the total number of observations. Then, the expected Benford proportions are converted into expected Benford counts. The first Benford count is then shown against an axis topping out at the total count, and thus, relatively, what we are seeing are the Benford proportions. Thus, every red line looks the same despite holding different values.

This is a master stroke.

 

 

 


Did prices go up or down? Depends on how one looks at the data

The U.S. media have been flooded with reports of runaway inflation recently, and it's refreshing to see a nice article in the Wall Street Journal that takes a second look at the data. Because as my readers know, raw data can be incredibly deceptive.

Inflation typically describes the change in price level relative to the prior year. The month-on-month change in price levels is a simple seasonal adjustment used to remove the effect of seasonality that masks the true change in price levels. (See this explainer of seasonal adjustment.)

As the pandemic enters the second year, this methodology is comparing 2021 price levels to pandemic-impacted price levels of 2020. This produces a very confusing picture. As the WSJ article explains, prices can be lower than they were in 2019 (pre-pandemic) and yet substantially higher than they were in 2020 (during the pandemic). This happens in industry sectors that were heavily affected by the economic shutdown, e.g. hotels, travel, entertainment.

Wsj_pricechangehotels_20192021Here is how they visualized this phenomenon. Amusingly, some algorithm estimated that it should take 5 minutes to read the entire article. It may take that much time to understand properly what this chart is showing.

Let me save you some time.

The chart shows monthly inflation rates of hotel price levels.

The pink horizontal stripes represent the official inflation numbers, which compare each month's hotel prices to those of a year prior. The most recent value for May of 2021 says hotel prices rose by 9% compared to May of 2020.

The blue horizontal stripes show an alternative calculation which compares each month's hotel prices to those of two years prior. Think of 2018-9 as "normal" years, pre-pandemic. Using this measure, we find that hotel prices for May of 2021 are about 4% lower than for May of 2019.

(This situation affects all of our economic statistics. We may see an expansion in employment levels from a year ago which still leaves us behind where we were before the pandemic.)

What confused me on the WSJ chart are the blocks of color. In a previous chart, the readers learn that solid colors mean inflation rose while diagonal lines mean inflation decreased. It turns out that these are month-over-month changes in inflation rates (notice that one end of the column for the previous month touches one end of the column of the next month).

The color patterns become the most dominant feature of this chart, and yet the month-over-month change in inflation rates isn't the crux of the story. The real star of the story should be the difference in inflation rates - for any given month - between two reference years.

***

In the following chart, I focus attention on the within-month, between-reference-years comparisons.

Junkcharts_redo_wsj_inflationbaserate

Because hotel prices dropped drastically during the pandemic, and have recovered quite well in recent months as the U.S. reopens the economy, the inflation rate of hotel prices is almost 10%. Nevertheless, the current price level is still 7% below the pre-pandemic level.

 



 


Probabilities and proportions: which one is the chart showing

The New York Times showed this chart (link):

Nyt_unvaccinated_undeterred

My first read: oh my gosh, 40-50% of the unvaccinated Americans are living their normal lives - dining at restaurants, assembling with more than 10 people, going to religious gatherings.

After reading the text around this chart, I realize I have misinterpreted it.

The chart should be read by columns. Each column is a "pie chart". For example, the first column shows that half the restaurant diners are not vaccinated, a third are fully vaccinated, and the remainder are partially vaccinated. The other columns have roughly the same proportions.

The author says "The rates of vaccination among people doing these activities largely reflect the rates in the population." This line is perhaps more confusing than intended. What she's saying is that in the general population, half of us are unvaccinated, a third are fully unvaccinated, and the remainder are partially vaccinated.

Here's a picture:

Junkcharts_redo_nyt_unvaccinatedundeterred

What this chart is saying is that the people dining out is like a random sample from all Americans. So too the other groups depicted. What Americans are choosing to do is independent of their vaccination status.

Unvaccinated people are no less likely to be doing all these activities than the fully vaccinated. This raises the question: are half of the people not wearing masks outdoors unvaccinated?

***

Why did I read the chart wrongly in the first place? It has to do with expectations.

Most survey charts plot probabilities not proportions. I haphazardly grabbed the following Pew Research chart as an example:

Pew_kids_socialmedia

From this chart, we learn that 30% of kids 9-11 years old uses TikTok compared to 11% of kids 5-8.  The percentages down a column do not sum to 100%.

 


And you thought that pie chart was bad...

Vying for some of the worst charts of the year, Adobe came up with a few gems in its Digital Trends Survey. This was a tip from Nolan H. on Twitter.

There are many charts that should be featured; I'll focus on this one.

Digitaltrendssurvey2

This is one of those survey questions that allow each respondent to select multiple responses so that adding up the percentages exceeds 100%. The survey asks people which of these futuristic products do they think is most important. There were two separate groups of respondents, consumers (lighter red) and businesses (darker red).

If, like me, you are a left-to-right, top-to-bottom reader, you'd have consumed this graphic in the following way:

Junkcharts_adobedigitaltrends_left2right

The most important item is found in the lower bottom corner while the least important is placed first.

Here is a more sensible order of these objects:

Junkcharts_adobedigitaltrends_big2small

To follow this order, our eyes must do this:

Junkcharts_adobedigitaltrends_big2small_2

Now, let me say I like what they did with the top of the chart:

Junkcharts_adobedigitaltrends_subtitle

Put the legend above the chart because no one can understand it without first reading the legend.

***

Junkcharts_adobedigitaltrends_datadistortionData are embedded into part-circles (i.e. sectors)... but where do we find the data? The most obvious place to look for them is the areas of the sectors. But that's the wrong place. As I show in the explainer, the designer placed the data in the "height" - the distance from the peak point of the object to the horizontal baseline.

As a result of this choice, the areas of the sectors distort the data - they are proportional to the square of the data.

One simple way to figure out that your graphical objects have obscured the data is the self-sufficiency test. Remove all data labels from the chart, and ask if you still have something understandable.

Junkcharts_adobedigitaltrends_sufficiency

With these unusual shapes, it's not easy to judge how much larger is one object from the next. That's why the data labels were included - the readers are looking at the data values, rather than the graphical objects. That's sad, if you are the designer.

***

One last mystery. What decides the layering of the light vs dark red sectors?

Junkcharts_adobedigitaltrends_frontback

This design always places the smaller object in front of the larger object. Recall that the light red is for consumers and dark red for businesses. The comparison between these disjoint segments is not as interesting as the comparison of different ratings of technologies with each segment. So it's unfortunate that this aspect may get more attention than it deserves. It's also a consequence of the chart form. If the light red is always placed in front, then in some panels (such as the middle one shown above), the light red completely blocks the dark red.

 


The time has arrived for cumulative charts

Long-time reader Scott S. asked me about this Washington Post chart that shows the disappearance of pediatric flu deaths in the U.S. this season:

Washingtonpost_pediatricfludeaths

The dataset behind this chart is highly favorable to the designer, because the signal in the data is so strong. This is a good chart. The key point is shown clearly right at the top, with an informative title. Gridlines are very restrained. I'd draw attention to the horizontal axis. The master stroke here is omitting the week labels, which are likely confusing to all but the people familiar with this dataset.

Scott suggested using a line chart. I agree. And especially if we plot cumulative counts, rather than weekly deaths. Here's a quick sketch of such a chart:

Junkcharts_redo_wppedflu_panel

(On second thought, I'd remove the week numbers from the horizontal axis, and just go with the month labels. The Washington Post designer is right in realizing that those week numbers are meaningless to most readers.)

The vaccine trials have brought this cumulative count chart form to the mainstream. For anyone who have seen the vaccine efficacy charts, the interpretation of the panel of line charts should come naturally.

Instead of four plots, I prefer one plot with four superimposed lines. Like this:

Junkcharts_redo_wppeddeaths_superpose2

 

 

 


Reading an infographic about our climate crisis

Let's explore an infographic by SCMP, which draws attention to the alarming temperature recorded at Verkhoyansk in Russia on June 20, 2020. The original work was on the back page of the printed newspaper, referred to in this tweet.

This view of the globe brings out the two key pieces of evidence presented in the infographic: the rise in temperature in unexpected places, and the shrinkage of the Arctic ice.

Scmp_russianheat_1a

A notable design decision is to omit the color scale. On inspection, the scale is present - it was sewn into the graphic.

Scmp_russianheat_colorscale

I applaud this decision as it does not take the reader's eyes away from the graphic. Some information is lost as the scale isn't presented in full details but I doubt many readers need those details.

A key takeaway is that the temperature in Verkhoyansk, which is on the edge of the Arctic Circle, was the same as in New Delhi in India on that day. We can see how the red was encroaching upon the Arctic Circle.

***Scmp_russianheat_2a

Next, the rapid shrinkage of the Arctic ice is presented in two ways. First, a series of maps.

The annotations are pared to the minimum. The presentation is simple enough such that we can visually judge that the amount of ice cover has roughly halved from 1980 to 2009.

A numerical measure of the drop is provided on the side.

Then, a line chart reinforces this message.

The line chart emphasizes change over time while the series of maps reveals change over space.

Scmp_russianheat_3a

This chart suggests that the year 2020 may break the record for the smallest ice cover since 1980. The maps of Australia and India provide context to interpret the size of the Arctic ice cover.

I'd suggest reversing the pink and black colors so as to refer back to the blue and pink lines in the globe above.

***

The final chart shows the average temperature worldwide and in the Arctic, relative to a reference period (1981-2000).

Scmp_russianheat_4

This one is tough. It looks like an area chart but it should be read as a line chart. The darker line is the anomaly of Arctic average temperature while the lighter line is the anomaly of the global average temperature. The two series are synced except for a brief period around 1940. Since 2000, the temperatures have been dramatically rising above that of the reference period.

If this is a stacked area chart, then we'd interpret the two data series as summable, with the sum of the data series signifying something interesting. For example, the market shares of different web browsers sum to the total size of the market.

But the chart above should not be read as a stacked area chart because the outside envelope isn't the sum of the two anomalies. The problem is revealed if we try to articulate what the color shades mean.

Scmp_russianheat_4_inset

On the far right, it seems like the dark shade is paired with the lighter line and represents global positive anomalies while the lighter shade shows Arctic's anomalies in excess of global. This interpretation only works if the Arctic line always sits above the global line. This pattern is broken in the late 1990s.

Around 1999, the Arctic's anomaly is negative while the global anomaly is positive. Here, the global anomaly gets the lighter shade while the Arctic one is blue.

One possible fix is to encode the size of the anomaly into the color of the line. The further away from zero, the darker the red/blue color.