Tidying up the details

This column chart caught my attention because of the color labels.

Thall_financials2023_pandl

Well, it also concerns me that the chart takes longer to take in than you'd think.

***

The color labels say "FY2123", "FY2022", and "FY1921". It's possible but unlikely that the author is making comparisons across centuries. The year 2123 hasn't yet passed, so such an interpretation would map the three categories to long-ago past, present and far-into-the-future.

Perhaps hyphens were inadvertently left off so "FY2123" means "FY2021 - FY2023". It's odd to report financial metrics in multi-year aggregations. I rule this out because the three categories would then also overlap.

Here's what I think the mistake is: somehow the prefix is rolled forward when it is applied to the years. "FY23", "FY22", "FY21" got turned into "FY[21]23", "FY[20]22", "FY[19]21" instead of putting 20 in all three slots.

The chart appeared in an annual financial report, and the comparisons were mostly about the reporting year versus the year before so I'm pretty confident the last two digits are accurately represented.

Please let me know if you have another key to this puzzle.

In the following, I'm going to assume that the three colors represent the most recent three fiscal years.

***

A few details conspire to blow up our perception time.

There was no extra spacing between groups of columns.

The columns are arranged in reverse time order, with the most recent year shown on the left. (This confuses those of us that use the left-to-right convention.)

The colors are not ordered. If asked to sort the three colors, you will probably suggest what is described as "intuitive" below:

Junkcharts_color_order

The intuitive order aligns with the amount of black added to a base color (hue). But this isn't the order assigned to the three years on the original chart.

***

Some of the other details on the chart are well done. For example, I like the handling of the gridlines and the axes.

The following revision tidies up some of the details mentioned above, without changing the key features of the chart:

Junkcharts_redo_trinhallfinancials

 


Making colors and groups come alive

_numbersense_coverIn the May 2024 issue of Significance, there is an enlightening article (link, paywall) about a new measure of inflation being adopted by the U.K. government known as HCI (Household Costs Indices). This is expected to replace CPI which is the de facto standard measure used around the world. In Chapter 7 of Numbersense (link), I discuss the construction of the CPI, which critics have alleged is manipulated by public officials to be over-optimistic.

The HCI looks promising as it addresses several weaknesses in the CPI measure. First, it implements accounting for household spending on housing - this has always been a tricky subject, regarding those who own homes rather than rent. Second, it recognizes that the average inflation number, which represents the average price changes on the average basket of goods purchased by the average person, does not reflect the experience of many. The HCI measures are broken down into demographic subgroups, so it's possible to compare the HCI of retirees vs non-retirees, for example.

Then comes this multi-colored bar chart:

Sig_hci sm

***

The chart is servicable: the reader can find the story. For almost all the subgroups listed, the HCI measure comes in higher than the CPI measure (black). For the income deciles, the reader sense that the relationship is not linear, that is to say, inflation does not increase (or decrease) as income. It appears that inflation is highest at both ends of the spectrum, and lowest for those who are in deciles 6 to 8. The only subgroup for whom CPI overestimates inflation is "private renter," which totally makes sense since the CPI index previously did not account for "owner-occupier housing" cost.

This is a chart with 19 bars, and 19 colors. The colors do not encode any data at all, which is a bit wasteful. We can make the colors come alive by encoding subgroup identity. This is what the grouped bar chart looks like:

Junkcharts_redo_sig_hci_grouped_bars

While this is still messy, this version makes it a bit easier to compare across subgroups. The chart simultaneously plots four different grouping methods: by retired/not, by income deciles, by housing situation and by having children/not. Within each grouping, the segments are mutually exclusive but between the grouping, the segments are overlapping. For example, the same person can be counted in Retired, and having Children, and also some retirees have children while other don't.

***

To better display the interactions between groups and subgroups, I prefer using a dot plot.

Junkcharts_redo_sig_hci_dots

This is not a simple dot plot either. It's a grouped dot plot with four levels that correspond to each grouping method. One can see the distribution of HCI values across the subgroups within each grouping, and also compare the range of values from one group to another group.

One side benefit of using the dot plot is to get rid of the non-informative space between values 0 and 20. When using a bar chart, we have to start the bars at zero to avoid distorting the encoding. Not so for a dot plot.

P.S. In the next iteration, I'd consider flipping the axes as that might simplify labeling the subgroups.

 


Pie charts and self-sufficiency

This graphic shows up in a recent issue of Princeton alumni magazine, which has a series of pie charts.

Pu_aid sm

The story being depicted is clear: the school has been generously increasing the amount of financial aid given to students since 1998. The proportion receiving any aid went from 43% to 67% so about two out of three students who enrolled in 2023 are getting aid.

The key components of the story are the values in 1998 and 2023, and the growth trend over this period.

***

Here is an exercise worth doing. Think about how you figured out the story components.

Is it this?

Junkcharts_redo_pu_aid_1

Or is it this?

Junkcharts_redo_pu_aid_2

***

This is what I've been calling a "self-sufficiency test" (link). How much work are the visual elements doing in conveying the graph's message to you? If the visual elements aren't doing much, then the designer hasn't taken advantage of the visual medium.


Reading log: HBR's specialty bar charts

Today, I want to talk about a type of analysis that I used to ask students to do. I'm calling it a reading log analysis – it's a reading report that traces how one consumes a dataviz work from where your eyes first land to the moment of full comprehension (or abandonment, if that is the outcome). Usually, we do this orally during a live session, but it's difficult to arrive at a full report within the limited class time. A written report overcomes this problem. A stack of reading logs should be a gift to any chart designer.

My report below is very detailed, reflecting the amount of attention I pay to the craft. Most readers won't spend as much time consuming a graphic. The value of the report is not only in what it covers but also in what it does not mention.

***

The chart being analyzed showed up in a Harvard Business Review article (link), and it was submitted by longtime reader Howie H.

Hbr_specialbarcharts

First and foremost, I recognized the chart form as a bar chart. It's an advanced bar chart in which each bar has stacked sections and a vertical line in the middle. Now, I wanted to figure out how data enter the picture.

My eyes went to the top legend which tells me the author was comparing the proportion of respondents who said "business should take responsibility" to the proportion who rated "business is doing well". The difference in proportions is called the "performance gap". I glanced quickly at the first row label to discover the underlying survey addresses social issues such as environmental concerns.

Next, I looked at the first bar, trying to figure out its data encoding scheme. The bold, blue vertical line in the middle of the bar caused me to think each bar is split into left and right sections. The right section is shaded and labeled with the performance gap numbers so I focused on the segment to the left of the blue line.

My head started to hurt a little. The green number (76%) is associated with the left edge of the left section of the bar. And if the blue line represents the other number (29%), then the width of the left section should map to the performance gap. This interpretation was obviously incorrect since the right section already showed the gap, and the width of the left section was not equal to that of the right shaded section.

I jumped to the next row. My head hurt a little bit more. The only difference between the two rows is the green number being 74%, 2 percent smaller. I couldn't explain how the left sections of both bars have the same width, which confirms that the left section doesn't display the performance gap (assuming that no graphical mistakes have been made). It also appeared that the left edge of the bar was unrelated to the green number. So I retreated to square one. Let's start over. How were the data encoded in this bar chart?

I scrolled down to the next figure, which applies the same chart form to other data.

Hbr_specialbarcharts_2

I became even more confused. The first row showed labels (green number 60%, blue number 44%, performance gap -16%). This bar is much bigger than the one in the previous figure, even though 60% was less than 76%. Besides, the left section, which is bracketed by the green number on the left and the blue number on the right, appeared much wider than the 16% difference that would have been merited. I again lapsed into thinking that the left section represents performance gaps.

Then I noticed that the vertical blue lines were roughly in proportion. Soon, I realized that the total bar width (both sections) maps to the green number. Now back to the first figure. The proportion of respondents who believe business should take responsibility (green number) is encoded in the full bar. In other words, the left edges of all the bars represent 0%. Meanwhile the proportion saying business is doing well is encoded in the left section. Thus, the difference between the full width and the left-section width is both the right-section width and the performance gap.

Here is an edited version that clarifies the encoding scheme:

Hbr_specialbarcharts_2

***

That's my reading log. Howie gave me his take:

I had to interrupt my reading of the article for quite a while to puzzle this one out. It's sorted by performance gap, and I'm sure there's a better way to display that. Maybe a dot plot, similar to here - https://junkcharts.typepad.com/junk_charts/2023/12/the-efficiency-of-visual-communications.html.

A dot plot might look something like this:

Junkcharts_redo_hbr_specialcharts_2
Howie also said:

I interpret the authros' gist to be something like "Companies underperform public expectations on a wide range of social challenges" so I think I'd want to focus on the uniform direction and breadth of the performance gap more than the specifics of each line item.

And I agree.


Do you want a taste of the new hurricane cone?

The National Hurricane Center (NHC) put out a press release (link to PDF) to announce upcoming changes (in August 2024) to their "hurricane cone" map. This news was picked up by Miami Herald (link).

New_hurricane_map_2024

The above example is what the map looks like. (The data are probably fake since the new map is not yet implemented.)

The cone map has been a focus of research because experts like Alberto Cairo have been highly critical of its potential to mislead. Unfortunately, the more attention paid to it, the more complicated the map has become.

The latest version of this map comprises three layers.

The bottom layer is the so-called "cone". This is the white patch labeled below as the "potential track area (day 1-5)".  Researchers dislike this element because they say readers tend to misinterpret the cone as predicting which areas would be damaged by hurricane winds when the cone is intended to depict the uncertainty about the path of the hurricane. Prior criticism has led the NHC to add the text at the top of the chart, saying "The cone contains the probable path of the storm center but does not show the size of the storm. Hazardous conditions can occur outside of the cone."

The middle layer are the multi-colored bits. Two of these show the areas for which the NHC has issued "watches" and "warnings". All of these color categories represent wind speeds at different times. Watches and warnings are forecasts while the other colors indicate "current" wind speeds. 

The top layer consists of black dots. These provide a single forecast of the most likely position of the storm, with the S, H, M labels indicating the most likely range of wind speeds at forecast times.

***

Let's compare the new cone map to a real hurricane map from 2020. (This older map came from a prior piece also by NHC.)

Old_hurricane_map_2020

Can we spot the differences?

To my surprise, the differences were minor, in spite of the pre-announced changes.

The first difference is a simplification. Instead of dividing the white cone (the bottom layer) into two patches -- a white patch for days 1-3, and a dotted transparent patch for days 4-5, the new map aggregates the two periods. Visually, simplifying makes the map less busy but loses the implicit acknowledge found in the old map that forecasts further out are not as reliable.

The second point of departure is the addition of "inland" warnings and watches. Notice how the red and blue areas on the old map hugged the coastline while the red and blue areas on the new map reach inland.

Both changes push the bottom layer, i.e. the cone, deeper into the background. It's like a shrink-flation ice cream cone that has a tiny bit of ice cream stuffed deep in its base.

***

How might one improve the cone map? I'd start by dismantling the layers. The three layers present answers to different problems, albeit connected.

Let's begin with the hurricane forecasting problem. We have the current location of the storm, and current measurements of wind speeds around its center. As a first requirement, a forecasting model predicts the path of the storm in the near future. At any time, the storm isn't a point in space but a "cloud" around a center. The path of the storm traces how that cloud will move, including any expansion or contraction of its radius.

That's saying a lot. To start with, a forecasting model issues the predicted average path -- the expected path of the storm's center. This path is (not competently) indicated by the black dots in the top layer of the cone map. These dots offer only a sampled view of the average path.

Not surprisingly, there is quite a bit of uncertainty about the future path of any storm. Many models simulate future worlds, generating many predictions of the average paths. The envelope of the most probable set of paths is the "cone". The expanding width of the cone over time reflects the higher uncertainty of our predictions further into the future. Confusingly, this cone expansion does not depict spatial expansion of either the storm's size or the potential areas that may suffer the greatest damage. Both of those tend to shrink as hurricanes move inland.

Nevertheless, the cone and the black dots are connected. The path drawn out by the black dots should be the average path of the center of the storm.

The forecasting model also generates estimates of wind speeds. Those are given as labels inside the black dots. The cone itself offers no information about wind speeds. The map portrays the uncertainty of the position of the storm's center but omits the uncertainty of the projected wind speeds.

The middle layer of colored patches also inform readers about model projections - but in an interpreted manner. The colors portray hurricane warnings and watches for specific areas, which are based on projected wind speeds from the same forecasting models described above. The colors represent NHC's interpretation of these model outputs. Each warning or watch simultaneously uses information on location, wind speed and time. The uncertainty of the projected values is suppressed.

I think it's better to use two focused maps instead of having one that captures a bit of this and a bit of that.

One map can present the interpreted data, and show the areas that have current warnings and watches. This map is about projected wind strength in the next 1-3 days. It isn't about the center of the storm, or its projected path. Uncertainty can be added by varying the tint of the colors, reflecting the confidence of the model's prediction.

Another map can show the projected path of the center of the storm, plus the cone of uncertainty around that expected path. I'd like to bring more attention to the times of forecasting, perhaps shading the cone day by day, if the underlying model has this level of precision.

***

Back in 2019, I wrote a pretty long post about these cone maps. Well worth revisiting today!


Neither the forest nor the trees

On the NYT's twitter feed, they featured an article titled "These Seven Tech Stocks are Driving the Market". The first sentence of the article reads: "The S&P 500 is at an all-time high, and investors have just a handful of stocks to thank for it."

Without having seen any data, I'd surmise from that line that (a) the S&P 500 index has gone up recently, and (b) most if not all of the gain in the index can be attributed to gains in the tech stocks mentioned in the headline. (For purists, a handful is five, not seven.)

The chart accompanying the tweet is a treemap:

Nyt_magnificentseven

The treemap is possibly the most overhyped chart type of the modern era. Its use here is tangential to the story of surging market value. That's because the treemap presents a snapshot of the composition of the index, but contains nothing about the trend (change over time) of the average index value or of its components.

***

Even in representing composition, the treemap is inferior to, gasp, a pie chart. Of course, we can only use a pie chart for small numbers of components. The following illustration takes the data from the NYT chart on the Magnificent Seven tech stocks, and compares a treemap versus a pie chart side by side:

Junkcharts_redo_nyt_magnificent7

The reason why the treemap is worse is that both the width and the height of the boxes are changing while only the radius (or angle) of the pie slices is varying. (Not saying use a pie chart, just saying the treemap is worse.)

There is a reason why the designer appended data labels to each of the seven boxes. The effect of not having those labels is readily felt when our eyes reach the next set of stocks – which carry company names but not their market values. What is the market value of Berkshire Hathaway?

Even more so, what proportion of the total is the market value of Berkshire Hathaway? Indeed, if the designer did not write down 29%, it would take a bit of work to figure out the aggregate value of yellow boxes relative to the entire box!

This design sucessfully draws our attention to the structural importance of various components of the whole. There are three layers - the yellow boxes (Magnificent Seven), the gray boxes with company names, and the other gray boxes. I also like how they positioned the text on the right column.

***

Going inside the NYT article itself, we find two line charts that convey the story as told.

Here's the first one:

Nyt_magnificent7_linechart1

They are comparing the most recent stock prices with those from October 12 2022, which is identified as the previous "low". (I'm actually confused by how the most recent "low" is defined, but that's a different subject.)

This chart carries a lot of good information, even though it does not plot "all the data", as in each of the 500 S&P components individually. Over the period under analysis, the average index value has gone up about 35% while the Magnificent Seven's value have skyrocketed by 65% in aggregate. The latter accounted for 30% of the total value at the most recent time point.

If we set the S&P 500 index value in 2024 as 100, then the M7 value in 2024 is 30. After unwinding the 65% growth, the M7 value in October 2022 was 18; the S&P 500 in October 2022 was 74. Thus, the weight of M7 was 24% (18/74) in October 2022, compared to 30% now. Consequently, the weight of the other 473 stocks declined from 76% to 70%.

This isn't even the full story because most of the action within the M7 is in Nvidia, the stock most tightly associated with the current AI hype, as shown in the other line chart.

Nyt_magnificent7_linechart2

Nvidia's value jumped by 430% in that time window. From the treemap, the total current value of M7 is $12.3 b while Nvidia's value is $1.4 b, thus Nvidia is 11.4% of M7 currently. Since M7 is 29% of the total S&P 500, Nvidia is 11.4%*29% = 3% of the S&P. Thus, in 2024, against 100 for the S&P, Nvidia's share is 3. After unwinding the 430% growth, Nvidia's share in October 2022 was 0.6, about 0.8% of 74. Its weight tripled during this period of time.


To a new year of pleasant surprises

Happy new year!

This year promises to be the year of AI. Already last year, we pretty much couldn't lift an eyebrow without someone making an AI claim. This year will be even noisier. Visual Capitalist acknowledged this by making the noisiest map of 2023:

Visualcapitalist_01_Generative_AI_World_map sm

I kept thinking they have a geography teacher on the team, who really, really wants to give us a lesson of where each country is on the world map.

All our attention is drawn to the guiding lines and the random scatter of numbers. We have to squint to find the country names. All this noise drowns out the attempt to make sense of the data, namely, the inset of the top 10 countries in the lower left corner, and the classification of countries into five colored groups.

A small dose of editing helps. Remove most data labels except for the countries for which they have a story. Provide a data table below for those who want details.

***

In the Methodology section, the data analysts (possibly from a third party called ElectronicsHub) indicated that they used Google search volume of "over 90 of the most popular generative AI tools", calculating the "overall volume across all tools per 100k population". Then came a baffling line: "all search volumes were scaled up according to the search engine market share in each country, using figures from statscounter.com." (Note: in the following, I'm calling the data "AI-related search" for simplicity even though their measurement is restricted to the terms described above.)

It took me a while to comprehend what they could have meant by that line. I believe this is what that sentence means: Google is not the only search engine out there so by only researching Google search volume, they undercount the true search volume. How did they deal with the missing data problem? They "scaled up" so if Google is 80% of the search volume in a country, then they divide the Google volume by 80% to "scale up" to 100%.

Whenever we use heuristics like this, we should investigate its foundations. What is the implicit assumption behind this scaling-up procedure? It is that all search engines are effectively the same. The users of non-Google search engines behave exactly as the Google search engine users. If the analysts somehow could get their hands on the data of other search engines, they would discover that the proportion of search volume that is AI-related is effectively the same as seen on Google.

This is one of those convenient, and obviously wrong assumptions – if true, the market would have no need for more than one search engine. Each search engine's audience is just a random sample from the population of all users.

Let's make up some numbers. Let's say Google has 80% share of search volume in Country A, and AI-related search 10% of the overall Google search volume. The remaining search engines have 20% share. Scaling up here means taking the 8% of Google AI-related search volume, divide by 80%, which yields 10%. Since Google owns 8% of the 10%, the other search engines see 2% of overall search volume attributed to AI searches in Country A. Thus, the proportion of AI-related searches on those other search engines is 2%/20% = 10%.

Now, in certain countries, Google is not quite as dominant. Let's say Google only has 20% share of Country B's search volume. AI-related search on Google is 2%, which is 10% of its total. Using the same scaling-up procedure, the analysts have effectively assumed that the proportion of AI-related search volume in the dominant search engines in Country B to be also 10%.

I'm using the above calculations to illustrate a shortcoming of this heuristic. Using this procedure inflates the search volume in countries in which Google is less dominant because the inflation factor is the reciprocal of Google's market share. The less dominant Google is, the larger the inflation factor.

What's also true? The less dominant Google is, the smaller proportion of the total data the analysts are able to see, the lower the quality of the available information. So the heuristic is the most influential where it has the greatest uncertainty.

***

Hope your new year is full of uncertainty, and your heuristics shall lead you to pleasant surprises.

If you like the blog's content, please spread the word. I'm looking forward to sharing more content as the world of data continues to evolve at an amazing pace.

Disclosure: This blog post is not written by AI.


Chartjunk as marketing copy

I got some spam marketing message last week. How exciting. They even use a subject line that has absolutely nothing to do with its content, baiting me to open it. And open I did, to some data graphics horrors.

The marketer promises a whole series of charts to prove that art is a great asset class for investment returns.

The very first chart already caught my full attention. It's this one:

Masterworks_chart1

It's a simple bar chart, with four values. Looks innocuous.

I'm unable to appreciate the recent trend to align bars in the middle, rather than at their bases. So I converted it to the canonical form:

Redo_masterworks_1_barchart

Do you see the problem?

The second value ($1.7 trillion) is exactly half the size of the first value ($3.4 trillion) and yet the second bar is two-thirds of the length of the first bar. So, the size of the second bar is exaggerated relative to its label – and that’s the bar displaying the market size for “art,” which is what the spammer is pitching.

The bottom pair of values share the same relationship: $0.8 trillion is exactly half of $1.6 trillion. Again, the relative lengths of those two bars are not 50% but slightly over 60%.

Redo_masterworks_1_barchart_excess

Did the designer think that the bar lengths could be customized to whatever s/he desires? This one is hard to crack.

***

The sixth chart in the series is a different kind of puzzle:

Masterworks_chart6

All three lines have the exact same labels but show different values over time.

***

And they have pie charts, of course. Take a look:

Masterworks_chart

Something went wrong here too. I'll leave it to my readers who can certainly figure it out :)

***

These charts were probably spammed to at least thousands.

 


Two metrics in-fighting

The Wall Street Journal shows the following chart which pits two metrics against each other:

Wsj_salaries25to29

The primary metric is the change in median yearly salary between the two periods of time. We presume it's primary because of its presence in the chart title, and the blue bars being more readable than the green bubbles. The secondary metric is the median yearly salary in the later period.

That, I believe, was the intended design. When I saw this chart, my eyes went to the numbers inside the green bubbles. Perhaps it's because I didn't read the chart title first, and the horizontal axis wasn't labelled so it wasn't obvious what the blue bars coded.

As with most bubble charts, the data labels exist to cover up the inadequacy of circular areas. The self-sufficiency test - removing the data labels - shows this well:

Redo_wsj_salaries25to29

It's simply impossible to know what values should be in each bubble, or to perceive the relative sizes of those bubbles.

***

Reversing the order of the blue bars also helps:

Redo_wsjsalaries25to29_2

The original order is one of the more annoying features in most visualization packages. Because internally, the categories are numbered 1, 2, 3, ..., and because the convention is to have values run higher as they run up the vertical axis, these packages would place the top-ranked item at the bottom of the chart.

Most people read top to bottom, which means that they read the least important item first, and the most important item last!

In most visualization packages, it takes only 1 click or 1 action to reverse the order of the items. Please do it!

***

For change over time, I like using a Bumps chart, otherwise called a slope graph:

Redo_wsjsalaries25to29_3


An elaborate data vessel

Visualcapitalist_globaloilproductionI recently came across the following dataviz showing global oil production (link).

This is an ambitious graphic that addresses several questions of composition.

The raw data show the amount of production by country adding up to the global total. The countries are then grouped by region. Further, the graph presents an oil-and-gas specific grouping, as indicated by the legend shown just below the chart title. This grouping is indicated by the color of the circumference of the circle containing the flag of the country.

This chart form is popular in modern online graphics programs. It is like an elaborate data vessel. Because the countries are lined up around the barrel, a space has been created on three sides to admit labels and text annotations. This is a strength of this chart form.

***

The chart conveys little information about the underlying data. Each country is given a unique odd shaped polygon, making it impossible to compare sizes. It’s definitely possible to pick out U.S., Russia, Saudi Arabia as the top producers. But in presenting the ranks of the data, this chart form pales in comparison to a straightforward data table, or a bar chart. The less said about presenting values, the better.

Indeed, our self-sufficiency test exposes the inability of these polygons to convey the data. This is precisely why almost all values of the dataset are present on the chart.

***

The dataviz subtly presumes some knowledge on the part of the readers.

The regions are not directly labeled. The readers must know that Saudi Arabia is in the Middle East, U.S. is part of North America, etc. Admittedly this is not a big ask, but it is an ask.

It is also assumed that readers know their flags, especially those of smaller countries. Some of the small polygons have no space left for country names and they are labeled with just flags.

Visualcapitalist_globaloilproduction_nocountrylabels

In addition, knowing country acronyms is required for smaller countries as well. For example, in Africa, we find AGO, COG and GAB.

Visualcapitalist_globaloilproduction_countryacronyms

For this chart form the designer treats each country according to the space it has on the chart (except those countries that found themselves on the edges of the barrel). Font sizes, icons, labels, acronyms, data labels, etc. vary.

The readers are assumed to know the significance of OPEC and OPEC+. This grouping is given second fiddle, and can be found via the color of the circumference of the flag icons.

Visualcapitalist_globaloilproduction_opeclegend

I’d have not assigned a color to the non-OPEC countries, and just use the yellow and blue for OPEC and OPEC+. This is a little edit but makes the search for the edges more efficient.

Visualcapitalist_globaloilproduction_twoopeclabels

***

Let’s now return to the perception of composition.

In exactly the same manner as individual countries, the larger regions are represented by polygons that have arbitrary shapes. One can strain to compile the rank order of regions but it’s impossible to compare the relative values of production across regions. Perhaps this explains the presence of another chart at the bottom that addresses this regional comparison.

The situation is worse for the OPEC/OPEC+ grouping. Now, the readers must find all flag icons with edges of a specific color, then mentally piece together these arbitrarily shaped polygons, then realizing that they won’t fit together nicely, and so must now mentally morph the shapes in an area-preserving manner, in order to complete this puzzle.

This is why I said earlier this is an elaborate data vessel. It’s nice to look at but it doesn’t convey information about composition as readers might expect it to.

Visualcapitalist_globaloilproduction_excerpt