## The cult of raw unadjusted data

##### Jan 23, 2024

The author attached a message: "Let's look at raw, unadjusted temperature data from remote US thermometers. What story do they tell?"

I suppose this post came from a climate change skeptic, and the story we're expected to take away from the chart is that there is nothing to see here.

***

What are we looking at, really?

"Nothing to see" probably refers to the patch of blue squares that cover the entire plot area, as time runs left to right from the 1910s to the present.

But we can't really see what's going on in the middle of the patch. So, "nothing to see" is effectively only about the top-to-bottom range of roughly 29.8 to 82.0. What does that range signify?

The blue patch is subdivided into vertical lines consisting of blue squares. Each line is a year's worth of temperature measurements. Each square is the average temperature on a specific day. The vertical range is the difference between the maximum and minimum daily temperatures in a given year. These are extreme values that say almost nothing about the temperatures in the other ~363 days of the year.

We know quite a bit more about the density of squares along each vertical line. They are broken up roughly by seasons. Those values near the top came from summers while the values near the bottom came from winters. The density is the highest near the middle, where the overplotting is so severe that we can barely see anything.

Within each vertical line, the data are not ordered chronologically. This is a very key observation. From left to right, the data are ordered from earliest to latest but not from top to bottom! Therefore, it is impossible for the human eye to trace the entire trajectory of the daily temperature readings from this chart. At best, you can trace the yearly average temperature – but only extremely roughly by eyeballing where the annual averages are inside the blue patch.

Indeed, there is "nothing to see" on this chart because its design has pulverized the data.

***

In Numbersense (link), I wrote "not adjusting the raw data is to knowingly publish bad information. It is analogous to a restaurant's chef knowingly sending out spoilt fish."

It's a fallacy to think that "raw unadjusted" data are the best kind of data. It's actually the opposite. Adjustments are designed to correct biases or other problems in the data. Of course, adjustments can be subverted to introduce biases in the data as well. It is subversive to presume that all adjustments are of the subversive kind.

What kinds of adjustments are of interest in this temperature dataset?

Foremost is the seasonal adjustment. See my old post here. If we want to learn whether temperatures have risen over these decades, we can't do so without separating out the seasons.

The whole dataset can be simplified by drawing the smoothed annual average temperature grouped by season of the year, and when that is done, the trend of rising temperatures is obvious.

***

The following chart by the EPA roughly implements the above:

The original can be found here. They made one adjustment which isn't the one I expected.

Note the vertical scale is titled "temperature anomaly". So, they are not plotting the actual recorded average temperatures, but the "anomalies", i.e. the difference between the recorded temperatures and some kind of "expected" temperature. This is a type of data adjustment as well. The purpose is to focus attention on the relative rather than absolute values. Think of this formula: recorded value = expected value + anomaly. The chart shows how many degrees above or below expectation, rather than how many degrees.

For a chart like this, there should be a required footnote that defines what "anomaly" is. Specifically, the reader should know about the model behind the "expectation". Typically, it's a kind of long-term average value.

For me, this adjustment is not necessary. Without the adjustment, the four panels can be combined into one panel with four lines. That's because the data nicely fit into four levels based on seasons.

The further adjustment I'd have liked to see is "smoothing". Each line above has a "smooth" trend, as well as some variability around this trend. The latter is not a big part of the story.

***

It's weird to push back on climate change advocacy by attacking data adjustments. The more productive direction, in my view, is to ask whether the observed trend is caused by human activities or part of some long-term up-and-down cycle. That is a very challenging question to answer.

## To a new year of pleasant surprises

##### Jan 01, 2024

Happy new year!

This year promises to be the year of AI. Already last year, we pretty much couldn't lift an eyebrow without someone making an AI claim. This year will be even noisier. Visual Capitalist acknowledged this by making the noisiest map of 2023:

I kept thinking they have a geography teacher on the team, who really, really wants to give us a lesson of where each country is on the world map.

All our attention is drawn to the guiding lines and the random scatter of numbers. We have to squint to find the country names. All this noise drowns out the attempt to make sense of the data, namely, the inset of the top 10 countries in the lower left corner, and the classification of countries into five colored groups.

A small dose of editing helps. Remove most data labels except for the countries for which they have a story. Provide a data table below for those who want details.

***

In the Methodology section, the data analysts (possibly from a third party called ElectronicsHub) indicated that they used Google search volume of "over 90 of the most popular generative AI tools", calculating the "overall volume across all tools per 100k population". Then came a baffling line: "all search volumes were scaled up according to the search engine market share in each country, using figures from statscounter.com." (Note: in the following, I'm calling the data "AI-related search" for simplicity even though their measurement is restricted to the terms described above.)

It took me a while to comprehend what they could have meant by that line. I believe this is what that sentence means: Google is not the only search engine out there so by only researching Google search volume, they undercount the true search volume. How did they deal with the missing data problem? They "scaled up" so if Google is 80% of the search volume in a country, then they divide the Google volume by 80% to "scale up" to 100%.

Whenever we use heuristics like this, we should investigate its foundations. What is the implicit assumption behind this scaling-up procedure? It is that all search engines are effectively the same. The users of non-Google search engines behave exactly as the Google search engine users. If the analysts somehow could get their hands on the data of other search engines, they would discover that the proportion of search volume that is AI-related is effectively the same as seen on Google.

This is one of those convenient, and obviously wrong assumptions – if true, the market would have no need for more than one search engine. Each search engine's audience is just a random sample from the population of all users.

Let's make up some numbers. Let's say Google has 80% share of search volume in Country A, and AI-related search 10% of the overall Google search volume. The remaining search engines have 20% share. Scaling up here means taking the 8% of Google AI-related search volume, divide by 80%, which yields 10%. Since Google owns 8% of the 10%, the other search engines see 2% of overall search volume attributed to AI searches in Country A. Thus, the proportion of AI-related searches on those other search engines is 2%/20% = 10%.

Now, in certain countries, Google is not quite as dominant. Let's say Google only has 20% share of Country B's search volume. AI-related search on Google is 2%, which is 10% of its total. Using the same scaling-up procedure, the analysts have effectively assumed that the proportion of AI-related search volume in the dominant search engines in Country B to be also 10%.

I'm using the above calculations to illustrate a shortcoming of this heuristic. Using this procedure inflates the search volume in countries in which Google is less dominant because the inflation factor is the reciprocal of Google's market share. The less dominant Google is, the larger the inflation factor.

What's also true? The less dominant Google is, the smaller proportion of the total data the analysts are able to see, the lower the quality of the available information. So the heuristic is the most influential where it has the greatest uncertainty.

***

Hope your new year is full of uncertainty, and your heuristics shall lead you to pleasant surprises.

If you like the blog's content, please spread the word. I'm looking forward to sharing more content as the world of data continues to evolve at an amazing pace.

Disclosure: This blog post is not written by AI.

## Tile maps on a trip

##### Jun 21, 2023

My friend Ray sent me to a recent blog about tile maps. Typical tile maps use squares or hexagons, although in theory many other shapes will do. Unsurprisingly, the field follows the latest development of math researchers who study the space packing problem. The space packing problem concerns how to pack a space with objects. The study of tesselations is to pack space with one or a few shapes.

It was an open question until recently whether there exists an "aperiodic monotile," that is to say, a single shape that can cover space in a non-repeating manner. We all know that we can use squares to cover a space, which creates the familiar grid of squares, but in that case, a pattern repeats itself all over the space.

Now, some researchers have found an elusive aperiodic monotile, which they dubbed the Einstein monotile. Below is a tesselation using these tiles:

Within this design, one cannot find a set of contiguous tiles that repeats itself.

The blogger then made a tile map using this new tesselation. Here's one:

It doesn't matter what this is illustrating. The blog author cites a coworker, who said: "I can think of no proper cartographic use for Penrose binning, but it’s fun to look at, and so that’s good enough for me." Penrose tiles is another mathematical invention that can be used in a tesselation. The story is still the same: there is no benefit from using these strange-looking shapes. Other than the curiosity factor.

***

Let's review the pros and cons of using tile maps.

Compare a typical choropleth map of the United States (by state) and a tile map by state. The former has the well-known problem that states with the largest areas usually have the lowest population densities, and thus, if we plot demographic data on such maps, the states that catch the most attention are the ones that don't weigh as much - by contrast, the densely populated states in New England barely show up.

The tile map removes this area bias, thus resolving this problem. Every state is represented by equal area.

While the tesselated design is frequently better, it's not always. In many data visualization, we do intend to convey the message that not all states are equal!

The grid arrangement of the state tiles also makes it easier to find regional patterns. A regional pattern is defined here as a set of neighboring states that share similar data (encoded in the color of the tiles). Note that the area of each state is of zero interest here, and thus, the accurate descriptions of relative areas found on the usual map is a distractor.

However, on the tile map, these regional patterns are conceptual. One must not read anything into the shape of the aggregated region, or its boundaries. Indeed, if we use strange-looking shapes like Einstein tiles, the boundaries are completely meaningless, and even misleading.

There also usually is some distortion of the spatial coordinates on a tile map because we'd like to pack the squares or hexagons into a lattice-like structure.

Lastly, the tile map is not scalable. We haven't seen a tile map of the U.S. by county or precinct but we have enjoyed many choropleth maps displaying county- or precinct-level data, e.g. the famous Purple Map of America. There is a reason for this.

***

Here is an old post that contains links to various other posts I've written about tile maps.

## Lay off bubbles

##### Mar 03, 2023

Wall Street Journal says that the scale of layoffs in the tech industry recently is worse than those caused by the pandemic lockdown. Here is the chart:

It's the dreaded bubble chart, complete with overlapping circles. Each bubble represents the total number of employees laid off in the U.S. in a given month.

The above isn't really the chart you find in the Journal. I have removed the two data labels from the chart. Look at the highlighted months of April 2020 and November 2022. Can you guess how much larger is the number of laid-off employees in November 2022 relative to April 2020?

***

If you guessed it's 100% - that the larger bubble is twice the size of the smaller one, then you're much better than I at reading bubble charts. Here is the published chart with the data labels:

I like to run this exercise - removing data labels - in order to reveal whether the graphical elements on the page are sufficient to convey the underlying data. Bubbles are typically not great at this. (This is what I call the self-sufficiency test.)

***

Another problem with bubble charts is that the sizes of the bubbles are arbitrary. This allows the designer to convey different messages with the same data.

Take a look at these two bubble charts:

The first one has huge bubbles, and lots of overlapping while the second one is roughly the same as the WSJ chart (I pulled a different dataset so the numbers may not be exactly the same).

Both charts are made from exactly the same data! In the second chart, the smallest bubbles are made very small while in the first chart, the smallest bubbles are still quite large.

Think twice before you make a bubble chart.

## Longest life, shortest length

##### Jan 09, 2023

Racetrack charts refuse to die. For old time's sake, here is a blog post from 2005 in which I explain why they don't make good dataviz.

Our latest example comes from Visual Capitalist (link), which publishes a fair share of nice dataviz. In this infographics, they feature a racetrack chart, just because the topic is the lifespan of cars.

The whole infographic has four parts, each a racetrack chart. I'll focus on the first racetrack chart (shown above), which deals with the product category of sedans and hatchbacks.

The first thing I noticed is the reference value of 100,000 miles, which is described as the expected lifespan of a typical car made in the 1970s. This is of dubious value since the top of the page informs us the current relevant reference value is 200,000 miles, which is unlabeled. We surmise that 200,000 miles is indicated by the end of the grey sections of the racetrack. (This is eventually confirmed in the next racettrack chart for SUVs in the second sectiotn of the infographic.)

Now let's zoom in on the brown section of the track. Each of the four sections illustrates the same datum = 100,000 miles and yet they exhibit different lengths. From this, we learn that the data are not encoded in the lengths of these tracks -- but rather the data are to be found in the angle sustained at the centre of the concentric circles. The problem with racetrack charts is that readers are drawn to the lengths of the tracks rather than the angles at the center, which are not explicitly represented.

The Avalon model has the longest life span on this chart, and yet it is shown as the shortest curve.

***

The most baffling part of this chart is not the visual but the analysis methodology.

I quote:

iSeeCars analyzed over 2M used cars on the road between Jan. and Oct. 2022. Rankings are based on the mileage that the top 1% of cars within each model obtained.

According to this blurb, the 245,710 miles number for Avalon is the average mileage found in the top 1% of Avalons within the iSeeCars sample of 2M used cars.

The word "lifespan" strikes me as incorporating a date of death, and yet nothing in the above text indicates that any of the sampled cars are at end of life. The cars they really need are not found in their sample at all.

I suppose taking the top 1% is meant to exclude younger cars but why 1%? Also, this sample completely misses the cars that prematurely died, e.g. the cars that failed after 100,000 miles but before 200,000 miles. This filtering also ensures that newer models are excluded from the sample.

In the Trifecta Checkup, this qualifies as Type DV. The dataset does not answer the question of concern while the visual form distorts the data.

## The blue mist

##### Dec 13, 2022

The New York Times printed several charts about Twitter "blue checks," and they aren't one of their best efforts (link).

Blue checks used to be credentials given to legitimate accounts, typically associated with media outlets, celebrities, brands, professors, etc. They are free but must be approved by Twitter. Since Elon Musk acquired Twitter, he turned blue checks into a revenue generator. Yet another subscription service (but you're buying "freedom"!). Anyone can get a blue check for US\$8 per month.

[The charts shown here are scanned from the printed edition.]

The first chart is a scatter plot showing the day of joining Twitter and the total number of followers the account has as of early November, 2022. Those are very strange things to pair up on a scatter plot but I get it: the designer could only work with the data that can be pulled down from Twitter's API.

What's wrong with the data? It would seem the interesting question is whether blue checks are associated with number of followers. The chart shows only Twitter Blue users so there is nothing to compare to. The day of joining Twitter is not the day of becoming "Twitter Blue", almost surely not for any user (Nevetheless, the former is not a standard data element released by Twitter). The chart has a built-in time bias since the longer an account exists, one would assume the higher the number of followers (assuming all else equal). Some kind of follower rate (e.g. number of followers per year of existence) might be more informative.

Still, it's hard to know what the chart is saying. That most Blue accounts have fewer than 5,000 followers? I also suspect that they chopped off the top of the chart (outliers) and forgot to mention it. Surely, some of the celebrity accounts have way over 150,000 followers. Another sign that the top of the chart was removed is that an expected funnel effect is not seen. Given the follower count is cumulative from the day of registration, we'd expect the accounts that started in the last few months should have markedly lower counts than those created years ago. (This is even more true if there is a survivorship bias - less successful accounts are more likely to be deleted over time.)

The designer arbitrarily labelled six specific accounts ("Crypto influencer", "HBO fan", etc.) but this feature risks sending readers the wrong message. There might be one HBO fan account that quickly grew to 150,000 followers in just a few months but does the data label suggest to readers that HBO fan accounts as a group tend to quickly attain high number of followers?

***

The second chart, which is an inset of the first, attempts to quantify the effect of the Musk acquisition on the number of "registrations and subscriptions". In the first chart, the story was described as "Elon Musk buys Twitter sparking waves of new users who later sign up for Twitter Blue".

The second chart confuses me. I was trying to figure out what is counted in the vertical axis. This was before I noticed the inset in the first chart, easy to miss as it is tucked into the lower right corner. I had presumed that the axis would be the same as in the first chart since there weren't any specific labels. In that case, I am looking at accounts with 0 to 500 followers, pretty inconsequential accounts. Then, the chart title uses the words "registrations and subscriptions." If the blue dots on this chart also refer to blue-check accounts as in the first chart, then I fail to see how this chart conveys any information about registrations (wbich presumably would include free accounts). As before, new accounts that aren't blue checks won't appear.

Further, to the extent that this chart shows a surge in subscriptions, we are restricted to accounts with fewer than 500 followers, and it's really unclear what proportion of total subscribers is depicted. Nor is it possible to estimate the magnitude of this surge.

Besides, I'm seeing similar densities of the dots across the entire time window between October 2021 and 2022. Perhaps the entire surge is hidden behind the black lines indicating the specific days when Musk announced and completed the acquisition, respectively. If the surge is hiding behind the black vertical lines, then this design manages to block the precise spots readers are supposed to notice.

Here is where we can use the self-sufficiency test. Imagine the same chart without the text. What story would you have learned from the graphical elements themselves? Not much, in my view.

***

The third chart isn't more insightful. This chart purportedly shows suspended accounts, only among blue-check accounts.

From what I could gather (and what I know about Twitter's API), the chart shows any Twitter Blue account that got suspended at any time. For example, all the black open circles occurring prior to October 27, 2022 represent suspensions by the previous management, and presumably have nothing to do with Elon Musk, or his decision to turn blue checks into a subscription product.

There appears to be a cluster of suspensions since Musk took over. I am not sure what that means. Certainly, it says he's not about "total freedom". Most of these suspended accounts have fewer than 50 followers, and only been around for a few weeks. And as before, I'm not sure why the analyst decided to focus on accounts with fewer than 500 followers.

What could have been? Given the number of suspended accounts are relatively small, an interesting analysis would be to form clusters of suspended accounts, and report on the change in what types of accounts got suspended before and after the change of management.

***

The online article (link) is longer, filling in some details missing from the printed edition.

There is one view that shows the larger accounts:

While more complete, this view isn't very helpful as the biggest accounts are located in the sparsest area of the chart. The data labels again pick out strange accounts like those of adult film stars and an Arabic news site. It's not clear if the designer is trying to tell us that most of Twitter Blue accounts belong to those categories.

***
See here for commentary on other New York Times graphics.

## What does Elon Musk do every day?

##### May 23, 2022

The Wall Street Journal published a fun little piece about tweets by Elon Musk (link).

Here is an overview of every tweet he sent since he started using Twitter more than a decade ago.

Apparently, he sent at least one tweet almost every day for the last four years. In addition, his tweets appear at all hours of the day. (Presumably, he is not the only one tweeting from his account.)

He doesn't just spend time writing tweets; he also reads other people's tweets. WSJ finds that up to 80% of his tweets include mentions of other users.

***

One problem with "big data" analytics is that they often don't answer interesting questions. Twitter is already one of the companies that put more of their data out there, but still, analysts are missing some of the most important variables.

We know that Musk has 93 million followers. We already know from recent news that a large proportion of such users may be spam/fake. It is frequently assumed in twitter analysis that any tweet he makes reaches 93 million accounts. That's actually far from correct. Twitter uses algorithms to decide what posts show up in each user's feed so we have no idea how many of the 93 million accounts are in fact exposed to any of Musk's tweets.

Further, not every user reads everything on their Twitter feed. I don't even check it every day. Because Twitter operates as a 'firehose" with ever-changing content as users send out short messages at all hours, what one sees depends on when one reads. If Musk tweets in the morning, the users who log on in the afternoon won't see it.

Let's say an analyst wants to learn how impactful Musk's tweets are. That's pretty difficult when one can't figure out which of the 93 million followers were shown these tweets, and who read them. The typical data used to measure response are retweets and likes. Those are convenient metrics because they are available. They are very limited in what they measure. There are lots of users who don't like or retweet at all.

***

The available data do make for some fun charts. This one gave me a big smile:

Between writing tweets, reading tweets, and ROTFL, every hour of almost every day, Musk finds time to run his several companies. That's impressive.

## Dots, lines, and 2D histograms

##### Mar 21, 2022

Daniel Z. tweeted about my post from last week. In particular, he took a deeper look at the chart of energy demand that put all hourly data onto the same plot, originally published at the StackOverflow blog:

I noted that this is not a great chart particularly since what catches our eyes are not the key features of the underlying data. Daniel made a clearly better chart:

This is a dot plot, rather than a line chart. The dots are painted in light gray, pushed to the background, because readers should be looking at the orange line. (I'm not sure what is going on with the horizontal scale as I could not get the peaks to line up on the two charts.)

What is this orange line? It's supposed to prove the point that the apparent dark band seen in the line chart does not represent the most frequently occurring values, as one might presume.

Looking closer, we see that the gray dots do not show all the hourly data but binned values.

We see vertical columns of dots, each representing a bin of values. The size of the dots represents the frequency of values of each bin. The orange line connects the bins with the highest number of values.

Daniel commented that

"The visual aggregation doesn't in fact map to the most frequently occurring values. That is because the ink of almost vertical lines fills in all the space between start and end."

Xan Gregg investigated further, and made a gif to show this effect better. Here is a screenshot of it (see this tweet):

The top chart is a true dot plot so that the darker areas are denser as the dots overlap. The bottom chart is the line chart that has the see-saw pattern. As Xan noted, the values shown are strangely very well behaved (aggregated? modeled?) - with each day, it appears that the values sweep up and down consistently.  This means the values are somewhat evenly spaced on the underlying trendline, so I think this dataset is not the best one to illustrate Daniel's excellent point.

It's usually not a good idea to connect lots of dots with a single line.

[P.S. 3/21/2022: Daniel clarified what the orange line shows: "In the posted chart, the orange line encodes the daily demand average (the mean of the daily distribution), rounded, for displaying purposes, to the closed bin. Bin size = 1000. Orange could have encode the daily median as well."]

## Multicultural, multicolor, manufactured outrage

##### Mar 17, 2022

Twitter users were incensed by this chart:

It's being slammed as one of the most outrageous charts ever.

***

An image search reveals this chart form has international appeal.

In Kazakh:

In Turkish:

In Arabic, but the image source is a Spanish company:

In English, from an Indian source:

In Russian:

***

Some people are calling this a pie chart.

But it isn't a pie chart since the slices clearly add up to more than one full circle.

It may be a graph template from an infographics website. You see people are applying data labels without changing the sizes or orientation or even colors of the slices. So the chart form is used as a container for data, rather than an encoder.

***

The Twitter user who called this "outrageous" appears to want to protect the designer, as the words have been deliberately snipped from the chart.

Nevertheless, Molly White coughed up the source in a subsequent tweet.

A bit strange, if you stop and think a little. Why would Molly shame the designer 20 hours later after she decided not to?

According to Molly, the chart appeared on the website of an NFT company. [P.S. See note below]

Here's the top of the page that Molly White linked to:

Notice the author of this page. That's "Molly White",  who is the owner of this NFT company! [See note below: she's the owner of a satire website who was calling out the owner of this company.]

Who's more outrageous?

Someone creating the most outrageous chart in order to get clout from outraged Twitter users and drive traffic to her new NFT venture? Or someone creating the template for the outrageous chart form, spawning an international collection?

[P.S. 3/17/2022 The answer is provided by other Twitter users, and the commentors. The people spreading this chart form is more ourageous. I now realized that Molly runs a sarcastic site. When she linked to the "source", she linked to her own website, which I interpreted as the source of the image. The page did contain that image, which added to the confusion. I must also add her work looks valuable, as it assesses some of the wild claims in Web3 land.

]

[P.S. 3/17/2022 Molly also pointed out that her second tweet about the source came around 45 minutes after the first tweet. Twitter showed "20 hours" because it was 20 hours from the time I read the tweet.]

## The what of visualization, beyond the how

##### Mar 16, 2022

A long-time reader sent me the following chart from a Nature article, pointing out that it is rather worthless.

The simple bar chart plots the number of downloads, organized by country, from the website called Sci-Hub, which I've just learned is where one can download scientific articles for free - working around the exorbitant paywalls of scientific journals.

The bar chart is a good example of a Type D chart (Trifecta Checkup). There is nothing wrong with the purpose or visual design of the chart. Nevertheless, the chart paints a misleading picture. The Nature article addresses several shortcomings of the data.

The first - and perhaps most significant - problem is that many Sci-Hub users are expected to access the site via VPN servers that hide their true countries of origin. If the proportion of VPN users is high, the entire dataset is called into doubt. The data would contain both false positives (in countries with VPN servers) and false negatives (in countries with high numbers of VPN users).

The second problem is seasonality. The dataset covered only one month. Many users are expected to be academics, and in the southern hemisphere, schools are on summer vacation in January and February. Thus, the data from those regions may convey the wrong picture.

Another problem, according to the Nature article, is that Sci-Hub has many competitors. "The figures include only downloads from original Sci-Hub websites, not any replica or ‘mirror’ site, which can have high traffic in places where the original domain is banned."

This mirror-site problem may be worse than it appears. Yes, downloads from Sci-Hub underestimate the entire market for "free" scientific articles. But these mirror sites also inflate Sci-Hub statistics. Presumably, these mirror sites obtain their inventory from Sci-Hub by setting up accounts, thus contributing lots of downloads.

***

Even if VPN and seasonality problems are resolved, the total number of downloads should be adjusted for population. The most appropriate adjustment factor is the population of scientists, but that statistic may be difficult to obtain. A useful proxy might be the number of STEM degrees by country - obtained from a UNESCO survey (link).

A metric of the type "number of Sci-Hub downloads per STEM degree" sounds odd and useless. I'd argue it's better than the unadjusted total number of Sci-Hub downloads. Just don't focus on the absolute values but the relative comparisons between countries. Even better, we can convert the absolute values into an index to focus attention on comparisons.