Here's a radar chart that works, sort of

In the same Reuters article that featured the speedometer chart which I discussed in this blog post (link), the author also deployed a small multiples of radar charts.

These radar charts are supposed to illustrate the article's theme that "European countries are racing to fill natural gas storage sites ahead of winter."

Here's the aggregate chart that shows all countries:

Reuters_gastorage_radar_details

In general, I am not a fan of radar charts. When I first looked at this chart, I also disliked it. But keep reading because I eventually decided that this usage is an exception. One just needs to figure out how to read it.

One reason why I dislike radar charts is that they always come with a lot of non-data-ink baggage. We notice that the months of the year are plotted in a circle starting at the top. They marked off the start of the war on Feb 24, 2022 in red. Then, they place the dotted circle, which represents the 80% target gas storage amount.

The trick is to avoid interpreting the areas, or the shapes of the blue and gray patches. I know, they look cool and grab our attention but in the context of conveying data, they are meaningless.

Redo_reuters_eugasradarall_1Instead of areas, focus on the boundaries of those patches. Don't follow one boundary around the circle. Pick a point in time, corresponding to a line between the center of the circle and the outermost circle, and look at the gap between the two lines. In the diagram shown right, I marked off the two relevant points on the day of the start of the war.

From this, we observe that across Europe, the gas storage was far less than the 80% target (recently set).

By comparing two other points (the blue and gray boundaries), we see that during February, Redo_reuters_eugasradarall_2gas storage is at a seasonal low, and in 2022, it is on the low side of the 5-year average. 

However, the visual does not match well with the theme of the article! While the gap between the blue and gray boundaries decreased since the start of the war, the blue boundary does not exceed the historical average, and does not get close to 80% until August, a month in which gas storage reaches 80% in a typical year.

This is example of a chart in which there is a misalignment between the Q and the V corners of the Trifecta Checkup (link).

_trifectacheckup_image

The question/message is that Europeans are reacting to the war by increasing their gas storage beyond normal. The visual actually says that they are increasing the gas storage as per normal.

***

As I noted before, when read in a particular way, these radar charts serve their purpose, which is more than can be said for most radar charts.

The designer made several wise choices:

Instead of drawing one ring for each year of data, the designer averaged the past 5 years and turned that into one single ring (patch). You can imagine what this radar chart would look like if the prior data were not averaged: hoola hoop mania!

Marawa-bgt

Simplifying the data in this way also makes the small multiples work. The designer uses the aggregate chart as a legend/how to read this. And in a further section below, the designer plots individual countries, without the non-data-ink baggage:

Reuters_gastorage_mosttofill

Thanks againto longtime reader Antonio R. who submitted this chart.

Happy Labor Day weekend for those in the U.S.!

 

 

 


Dataviz is good at comparisons if we make the right comparisons

In an article about gas prices around the world, the Washington Post uses the following bar chart (link):

Wpost_gasprices_highincome

There are a few wrinkles in this one compared to the most generic bar chart one can produce:

Redo_wpost_gasprices_0

(The numbers on my chart are not the same as Washington Post's. That's because the data vendor charges for data, except for the most recent week. So, my data is from a different week.)

_trifectacheckup_imageThe gas prices are not expressed in dollars but a transformation turns prices into a cost-effectiveness metric: miles per dollar, or more precisely, miles per $40 dollars of gas. The metric has a reverse direction - the higher the price, the lower the miles. The data transformation belongs to the D corner of the Trifecta Checkup framework (link). Depending on how one poses the Q(uestion) of the chart, the shift from dollars to miles can bring the Q and the D in sync.

In the V(isual) corner, the designer embellishes the bars. A car icon is placed at the tip of each bar while the bar itself is turned into a wavy path, symbolizing a dirt path. The driving metaphor is in full play. In fact, the video makes the most out of it. There is no doubt that the embellishment has turned a mere scientific presentation into a form of entertainment.

***

Did the embellishment harm visual clarity? For the most part, no.

The worst it can get is when they compared U.S. and India/South Africa:

Redo_wpost_gasprices_indiasouthafrica

The left column shows the original charts from the article. In  both charts, the two cars are so close together that it is impossible to learn the scale of the difference. The amount of difference is a fraction of the width of a car icon.

The right column shows the "self-sufficiency test". Imagine the data labels are not on the chart. What we learn is that if we wanted to know how big of a gap is between the two countries, when reading the charts on the left, we are relying on the data labels, not the visual elements. On the right side, if we really want to learn the gaps, we have to look through the car icons to find the tips of the bars!

This discussion does not necessarily doom the appealing chart. If the message one wants to send with the India/South Afrcia charts is that there is negligible difference between them, then it is not crucial to present the precise differences in prices.

***

The real problem with this dataviz is in the D corner. Comparing countries is hard.

As shown above, by the miles per $40 spend metric, U.S. and India are rated essentially the same. So is the average American and the average Indian suffering equally?

Far from it. The clue comes from the aggregate chart, in which countries are divided into three tiers: high income, upper middle income and lower middle income. The U.S. belongs to the high-income tier while India falls into the lower-middle-income tier.

The cost of living in India is much lower than in the US. Forty dollars is a much bigger chunk of an Indian paycheck than an American one.

To adjust for cost of living, economists use a PPP (purchasing power parity) value. The following chart shows the difference:

Redo_wpost_gasprices_1

The right graph contains cost-of-living adjustments. It shows a completely different picture. Nominally (left chart), the price of gas in about the same in dollar terms between U.S. and India. In terms of cost of living, gas is actually 5 times more expensive in India. Thus, the adjusted miles per $40 gas number is much smaller for India than the unadjusted. (Because PPP is relative to U.S. prices, the U.S. numbers are not affected.)

PPP is not the end-all here. According to the Economic Times (India), only 22 out of 1,000 Indians own cars, compared to 980 out of 1,000 Americans. Think about the implication of using any statistic that averages the entire population!

***

Why is gas more expensive in California than the U.S. average? The talking point I keep hearing is environmental regulations. Gas prices may be higher in Europe for a similar reason. Residents in those places may be willing to pay higher prices because they get satisfaction from playing their part in preserving the planet for future generations.

The footnote discloses this not-trivial issue.

Wpost_gasprices_footnote

When converting from dollars per gallon/liter into miles per $40, we need data on miles per gallon/liter. Americans notoriously drive cars (trucks, SUVs, etc.) that have much lower mileage than those driven by other countries. However, this factor is artificially removed by assuming the same car with 32 mpg on all countries. A quick hop to the BTS website tells us that the average mpg of American cars is a third of that assumption. [See note below.]

Ignoring cross-country comparisons for the time being, the true number for U.S. is not 247 miles per $40 spent on gas as claimed. It is a third of that value: 82 miles per $40 spent.

It's tough to find data on fuel economy of all passenger cars, not just new passenger cars. I found Australia's number, which is 21 mpg. So this brings the miles per $40 number down from about 230 to 115. These are not small adjustments.

Washington Post's analysis paints a simplistic picture that presupposes that price is the only thing people care about. I call this issue xyopia. It's when the analyst frames the problem as factor x explaining outcome y, and when factor x is not the only, and frequently not even the most important, factor affecting y.

More on xyopia.

More discussion of Washington Post graphics.

 

[P.S. 7-25-2022. Reader Cody Curtis pointed out in the comments that the Bureau of Transportation Statistics report was using km/liter as units, not miles per gallon. The 10 km/liter number for average cars is roughly 23 mpg. I'll leave the text as is in the post as the larger point is valid: that there is variation in average fuel economy between nations - partly due to environemental regulation and consumer behavior - and thus, a proper comparison requires adjusting for this factor.]


The what of visualization, beyond the how

A long-time reader sent me the following chart from a Nature article, pointing out that it is rather worthless.

Nautre_scihub

The simple bar chart plots the number of downloads, organized by country, from the website called Sci-Hub, which I've just learned is where one can download scientific articles for free - working around the exorbitant paywalls of scientific journals.

The bar chart is a good example of a Type D chart (Trifecta Checkup). There is nothing wrong with the purpose or visual design of the chart. Nevertheless, the chart paints a misleading picture. The Nature article addresses several shortcomings of the data.

The first - and perhaps most significant - problem is that many Sci-Hub users are expected to access the site via VPN servers that hide their true countries of origin. If the proportion of VPN users is high, the entire dataset is called into doubt. The data would contain both false positives (in countries with VPN servers) and false negatives (in countries with high numbers of VPN users). 

The second problem is seasonality. The dataset covered only one month. Many users are expected to be academics, and in the southern hemisphere, schools are on summer vacation in January and February. Thus, the data from those regions may convey the wrong picture.

Another problem, according to the Nature article, is that Sci-Hub has many competitors. "The figures include only downloads from original Sci-Hub websites, not any replica or ‘mirror’ site, which can have high traffic in places where the original domain is banned."

This mirror-site problem may be worse than it appears. Yes, downloads from Sci-Hub underestimate the entire market for "free" scientific articles. But these mirror sites also inflate Sci-Hub statistics. Presumably, these mirror sites obtain their inventory from Sci-Hub by setting up accounts, thus contributing lots of downloads.

***

Even if VPN and seasonality problems are resolved, the total number of downloads should be adjusted for population. The most appropriate adjustment factor is the population of scientists, but that statistic may be difficult to obtain. A useful proxy might be the number of STEM degrees by country - obtained from a UNESCO survey (link).

A metric of the type "number of Sci-Hub downloads per STEM degree" sounds odd and useless. I'd argue it's better than the unadjusted total number of Sci-Hub downloads. Just don't focus on the absolute values but the relative comparisons between countries. Even better, we can convert the absolute values into an index to focus attention on comparisons.

 


Easy breezy bar charts, perhaps

I came across the following bar chart (link), which presents the results of a survey of CMOs (Chief Marketing Officers) on their attitudes toward data analytics.

Big-Data-and-the-CMO_chart5-Hurdle-800_30Apr2013Responses are tabulated to the question about the most significant hurdle(s) against the increasing use of data and analytics for marketing.

Eleven answers were presented, in addition to the catchall "Other" response. I'm unable to divine the rule used by the designer to sequence the responses.

It's not in order of significance, the most obvious choice. It's not alphabetical, either.

***

I think this indiscretion is partially redeemed by the use of color shades. The darkest blue shade points our eyes to the most significant hurdle - lack of investment in technology (44% of respondents). The second most significant hurdle is "availability of credible tools for measuring effectiveness" (31%), and that too is in dark blue.

Now what? The third most popular answer has 30% of the respondents, but it's shown by the second palest blue! I then realize the colors don't actually convey any information. Five shades of blue were selected, and they are laid out from top to bottom, from palest to darkest, in a sequential, recursive manner.

***

This chart is wild. Notice how the heights of the bars are variable. It seems that some bars have been widened to accommodate wrapped lines of text. These small edits introduce visual distortion so that the areas of these bars no longer are proportional to the data.

I like a pair of design decisions. Not showing decimal places and appending the % sign on each bar label is good. They also extend the horizontal axis to 100%. This shows what proportion of the respondents selected any particular answer - we note that a respondent is allowed to select more than one response.

The following is a more standard way of making a bar chart. (The color shading is not necessary.)

Redo_CMOsurveyanalytics

This example proves that the V corner of the Trifecta Checkup is still relevant. After one develops a good question, collects useful data and selects a standard chart form, figuring out how to visually display the information is not as easy breezy as one might think.


Type D charts

A twitter follower sent the following chart:

China_military_spending

It's odd to place the focus on China when the U.S. line is much higher, and the growth in spending in the last few years in the U.S. is much higher than the growth rate in China.

_trifectacheckup_imageIn the Trifecta Checkup, this chart is Type D (link): the data are at odds with the message of the chart. The intended message likely is China is building up its military in an alarming way. This dataset does not support such a conclusion.

The visual design of the chart can't be faulted though. It's clean, and restrained. It even places line labels at the end of each line. Also, the topic of the chart - the arms race - is unambiguous.

One fix is to change the message to bring it in line with the data. If the question being addressed is which country spends the most on the military, or which country has been raising spending at the fastest rate, then the above chart is appropriate.

If the question is about spending in China, then a different measure such as average annual spending increase may work.

Neither solution requires changing the visual form. That's why data visualization excellence is more than just selecting the right chart form.


Visual design is hard, brought to you by NYC subway

This poster showed up in a NY subway train recently.

Rootin-sm

Visual design is hard!

What is the message? The intention is, of course, to say Rootine is better than others. (That's the Q corner, if you're following the Trifecta Checkup.)

What is the visual telling us (V corner)? It says Rootine is yellow while Others are purple. What do these color mean? There is no legend to help decipher it. And yellow-purple doesn't have a canonical interpretation (unlike say, red-green). In theory, purple can be better than yellow.

The other mystery is the black dot on the fifth item. (This is the NYC subway so the poster could have been vandalized.) It could mean "diet + lifestyle analyzed" is a unique feature of Rootine, not available on any other platform. That implies purple to mean available but not as effective, which significantly lessnes the impact of the chart.

***

Finally, let's imagine the data that may exist to support this chart.

The aggregation of all competitors to "Others" imposes a major challenge. If yellow means yes, and purple means no, we'd expect few if any purple dots because across all competitors, there is a good chance that at least one of them has a particular feature.

Next, I'm dubious about the claim of "precision dosed, unique to you". I'm imagining they are selling some kind of medicine or health food, which can be "dosed". Predictive modelers like to market their models as "personalized," unique to each person but such a thing is impractical. Before you start using their products, they have no data on you, or your response to those products. How could the recommendation be "precision dosed, unique to you"?

Even if you've used the product for a while, it will be tough to achieve a good level of optimality with so little data. In fact, given that your past data are used to generate actions intended to improve your health - that is to say, to cause the future data to diverge from the past data, how do you know that any change you observe next period is caused by the actions you took? The pre-post difference is both affected by temporal shifts and the actions you've taken. If the next period's metric improves, you may want to believe that the actions worked. If the next period's metric declines, are you willing to conclude that the actions you took backfired?

"Formulas improve with you". This makes me more worried than relieved.

***

Problems like these can be solved by showing our work to others. Sometimes, we're too immersed in our own world we don't see we have left off key information.

 

 


How does the U.K. vote in the U.N.?

Through my twitter feed, I found my way to this chart, made by jamie_bio.

Jamie_bio_un_votes25032021

This is produced using R code even though it looks like a slide.

The underlying dataset concerns votes at the United Nations on various topics. Someone has already classified these topics. Jamie looked at voting blocs, specifically, countries whose votes agree most often or least often with the U.K.

If you look at his Github, this is one in a series of works he produced to hone his dataviz skills. Ultimately, I think this effort can benefit from some re-thinking. However, I also appreciate the work he has put into this.

Let's start with the things I enjoyed.

Given the dataset, I imagine the first visual one might come up with is a heatmap that shows countries in rows and topics in columns. That would work ok, as any standard chart form would but it would be a data dump that doesn't tell a story. There are almost 200 countries in the entire dataset. The countries can only be ordered in one way so if it's ordered for All Votes, it's not ordered for any of the other columns.

What Jamie attempts here is story-telling. The design leads the reader through a narrative. We start by reading the how-to-read-this box on the top left. This tells us that he's using a lunar eclipse metaphor. A full circle in blue indicates 0% agreement while a full circle in white indicates 100% agreement. The five circles signal that he's binning the agreement percentages into five discrete buckets, which helps simplify our understanding of the data.

Then, our eyes go to the circle of circles, labelled "All votes". This is roughly split in half, with the left side showing mostly blue and the right showing mostly white. That's because he's extracting the top 5 and bottom 5 countries, measured by their vote alignment with the U.K. The countries names are clearly labelled.

Next, we see the votes broken up by topics. I'm assuming not all topics are covered but six key topics are highlighted on the right half of the page.

What I appreciate about this effort is the thought process behind how to deliver a message to the audience. Selecting a specific subset that addresses a specific question. Thinning the materials in a way that doesn't throw the kitchen sink at the reader. Concocting the circular layout that presents a pleasing way of consuming the data.

***

Now, let me talk about the things that need more work.

I'm not convinced that he got his message across. What is the visual telling us? Half of the cricle are aligned with the U.K. while half aren't so the U.K. sits on the fence on every issue? But this isn't the message. It's a bit of a mirage because the designer picked out the top 5 and bottom 5 countries. The top 5 are surely going to be voting almost 100% with the U.K. while the bottom 5 are surely going to be disagreeing with the U.K. a lot.

I did a quick sketch to understand the whole distribution:

Redo_junkcharts_ukvotes_overview_2

This is not intended as a show-and-tell graphic, just a useful way of exploring the dataset. You can see that Arms Race/Disarmament and Economic Development are "average" issues that have the same form as the "All issues" line. There are a small number of countries that are extremely aligned with the UK, and then about 50 countries that are aligned over 50% of the time, then the other 150 countries are within the 30 to 50% aligned. On human rights, there is less alignment. On Palestine, there is more alignment.

What the above chart shows is that the top 5 and bottom 5 countries both represent thin slithers of this distribution, which is why in the circular diagrams, there is little differentiation. The two subgroups are very far apart but within each subgroup, there is almost no variation.

Another issue is the lunar eclipse metaphor. It's hard to wrap my head around a full white circle indicating 100% agreement while a full blue circle shows 0% agreement.

In the diagrams for individual topics, the two-letter acronyms for countries are used instead of the country names. A decoder needs to be provided, or just print the full names.

 

 

 

 

 

 


Simple charts are the hardest to do right

The CDC website has a variety of data graphics about many topics, one of which is U.S. vaccinations. I was looking for information about Covid-19 data broken down by age groups, and that's when I landed on these charts (link).

Cdc_vaccinations_by_age_small

The left panel shows people with at least one dose, and the right panel shows those who are "fully vaccinated." This simple chart takes an unreasonable amount of time to comprehend.

***

The analyst introduces three metrics, all of which are described as "percentages". Upon reflection, they are proportions of the people in specific age ranges.

Readers are thus invited to compare these proportions. It's not clear, however, which comparisons are intended. The first item listed in the legend states "Percent among Persons who completed all recommended doses in last 14 days". For most readers, including me, this introduces an unexpected concept. The 14 days here do not refer to the (in)famous 14-day case-counting window but literally the most recent two weeks relative to when the chart was produced.

It would have been clearer if the concept of Proportions were introduced in the chart title or axis title, while the color legend explains the concept of the base population. From the lighter shade to the darker shade (of red and blue) to the gray color, the base population shifts from "Among Those Who Completed/Initiated Vaccinations Within Last 14 Days" to "Among Those Who Completed/Initiated Vaccinations Any Time" to "Among the U.S. Population (regardless of vaccination status)".

Also, a reverse order helps our comprehension. Each subsequent category is a subset of the one above. First, the whole population, then those who are fully vaccinated, and finally those who recently completed vaccinations.

The next hurdle concerns the Q corner of our Trifecta Checkup. The design leaves few hints as to what question(s) its creator intended to address. The age distribution of the U.S. population is useless unless it is compared to something.

One apparently informative comparison is the age distribution of those fully vaccinated versus the age distribution of all Americans. This is revealed by comparing the lengths of the dark blue bar and the gray bar. But is this comparison informative? It's telling me that people aged 50 to 64 account for ~25% of those who are fully vaccinated, and ~20% of all Americans. Because proportions necessarily add to 100%, this implies that other age groups have been less vaccinated. Duh! Isn't that the result of an age-based vaccination prioritization? During the first week of the vaccination campaign, one might expect close to 100% of all vaccinations to be in the highest age group while it was 0% for the other age groups.

This is a chart in search of a question. The 25% vs 20% comparison does not assist readers in making a judgement. Does this mean the vaccination campaign is working as expected, worse than expected or better than expected? The problem is the wrong baseline. The designer of this chart implies that the expected proportions should conform to the overall age distribution - but that clearly stands in the way of CDC's initial prioritization of higher-risk age groups.

***

In my version of the chart, I illustrate the proportion of people in each age group who have been fully vaccinated.

Junkcharts_cdcvaccinationsbyage_1

Among those fully vaccinated, some did it within the most recent two weeks:

Junkcharts_cdcvaccinationsbyage_2

***

Elsewhere on the CDC site, one learns that on these charts, "fully vaccinated" means one shot of J&J or 2 shots of Pfizer or Moderna, without dealing with the 14-day window or other complications. Why do we think different definitions are used in different analyses? Story-first thinking, as I have explained here. When it comes to telling the story about vaccinations, the story is about the number of shots in arms. They want as big a number as possible, and abandon any criterion that decreases the count. When it comes to reporting on vaccine effectiveness, they want as small a number of cases as possible.

 

 

 

 

 


What metaphors give, they take away

Aleks pointed me to the following graphic making the rounds on Twitter:

Whyaxis_covid_men

It's being passed around as an example of great dataviz.

The entire attraction rests on a risque metaphor. The designer is illustrating a claim that Covid-19 causes erectile dysfunction in men.

That's a well-formed question so in using the Trifecta Checkup, that's a pass on the Q corner.

What about the visual metaphor? I advise people to think twice before using metaphors because these devices can give as they can take. This example is no exception. Some readers may pay attention to the orientation but other readers may focus on the size.

I pulled out the tape measure. Here's what I found.

Junkcharts_covid_eds

The angle is accurate on the first chart but the diameter has been exaggerated relative to the other. The angle is slightly magnified in the bottom chart which has a smaller circumference.

***

Let's look at the Data to round out our analysis. They come from a study from Italy (link), utilizing survey responses. There were 25 male respondents in the survey who self-reported having had Covid-19. Seven of these submitted answers to a set of five questions that were "suggestive of erectile dysfunction". (This isn't as arbitrary as it sounds - apparently it is an internationally accepted way of conducting reseach.) Seven out of 25 is 28 percent. Because the sample size is small, the 95% confidence range is 10% to 46%.

The researchers then used the propensity scoring method to find 3 matches per each infected person. Each match is a survey respondent who did not self-report having had Covid-19. See this post about a real-world vaccine study to learn more about propensity scoring. Among the 75 non-infected men, 7 were judged to have ED. The 95% range is 3% to 16%.

The difference between the two subgroups is quite large. The paper also includes other research that investigates the mechanisms that can explain the observed correlation. Nevertheless, the two proportions depicted in the chart have wide error bars around them.

I have always had a question about analysis using this type of survey data (including my own work). How do they know that ED follows infection rather than precedes it? One of the inviolable rules of causation is that the effect follows the cause. If it's a series of surveys, the sequencing may be measurable but a single survey presents challenges. 

The headline of the dataviz is "Get your vaccines". This comes from a "story time" moment in the paper. On page 1, under Discussion and conclusion, they inserted the sentence "Universal vaccination against COVID-19 and the personal protective equipment could possibly have the added benefit of preventing sexual dysfunctions." Nothing in the research actually supports this claim. The only time the word "vaccine" appears in the entire paper is on that first page.

"Story time" is the moment in a scientific paper when the researchers - after lulling readers to sleep over some interesting data - roll out statements that are not supported by the data presented before.

***

The graph succeeds in catching people's attention. The visual metaphor works in one sense but not in a different sense.

 

P.S. [8/6/2021] One final note for those who do care about the science: the internet survey not surprisingly has a youth bias. The median age of 25 infected people was 39, maxing out at 45 while the median of the 75 not infected was 42, maxing out at 49.


One of the most frequently produced maps is also one of the worst

Summer is here, many Americans are putting the pandemic in their rear-view mirrors, and gas prices are soaring. Business Insider told the story using this map:

Businessinsider_gasprices_1

What do we want to learn about gas prices this summer?

Which region has the highest / lowest prices?

How much higher / lower than the national average are the regional prices?

How much has prices risen, compared to last year, or compared to the last few weeks?

***

How much work did you have to do to get answers to those questions from the above map?

Unfortunately, this type of map continues to dominate the popular press. It merely delivers a geography lesson and not much else. Its dominant feature tells readers how to classify the 50 states into regions. Its color encodes no data.

Not surprisingly, this map fails the self-sufficiency test (link). The entire dataset is printed on the map, and if those numbers were removed, we would be left with a map of the regions of the U.S. The graphical elements of the chart are not doing much work.

***

In the following chart, I used the map as a color legend. Also, an additional plot shows each region's price level against the national average.

Junkcharts_redo_businessinsider_gasprices2021

One can certainly ditch the map altogether, which makes having seven colors unnecessary. To address other questions, just stack on other charts, for example, showing the price increase versus last year.

***

_trifectacheckup_imageFrom a Trifecta Checkup perspective, we find that the trouble starts with the Q corner. There are several important questions not addressed by the graphic. In the D corner, no context is provided to interpret the data. Are these prices abnormal? How do they compare to the national average or to a year ago? In the V corner, the chart takes too much effort to comprehend a basic fact, such as which region has the highest average price.

For more on the Trifecta Checkup, see this guide.