The blue mist

The New York Times printed several charts about Twitter "blue checks," and they aren't one of their best efforts (link).

Blue checks used to be credentials given to legitimate accounts, typically associated with media outlets, celebrities, brands, professors, etc. They are free but must be approved by Twitter. Since Elon Musk acquired Twitter, he turned blue checks into a revenue generator. Yet another subscription service (but you're buying "freedom"!). Anyone can get a blue check for US$8 per month.

[The charts shown here are scanned from the printed edition.]

Nyt_twitterblue_chart1

The first chart is a scatter plot showing the day of joining Twitter and the total number of followers the account has as of early November, 2022. Those are very strange things to pair up on a scatter plot but I get it: the designer could only work with the data that can be pulled down from Twitter's API.

What's wrong with the data? It would seem the interesting question is whether blue checks are associated with number of followers. The chart shows only Twitter Blue users so there is nothing to compare to. The day of joining Twitter is not the day of becoming "Twitter Blue", almost surely not for any user (Nevetheless, the former is not a standard data element released by Twitter). The chart has a built-in time bias since the longer an account exists, one would assume the higher the number of followers (assuming all else equal). Some kind of follower rate (e.g. number of followers per year of existence) might be more informative.

Still, it's hard to know what the chart is saying. That most Blue accounts have fewer than 5,000 followers? I also suspect that they chopped off the top of the chart (outliers) and forgot to mention it. Surely, some of the celebrity accounts have way over 150,000 followers. Another sign that the top of the chart was removed is that an expected funnel effect is not seen. Given the follower count is cumulative from the day of registration, we'd expect the accounts that started in the last few months should have markedly lower counts than those created years ago. (This is even more true if there is a survivorship bias - less successful accounts are more likely to be deleted over time.)

The designer arbitrarily labelled six specific accounts ("Crypto influencer", "HBO fan", etc.) but this feature risks sending readers the wrong message. There might be one HBO fan account that quickly grew to 150,000 followers in just a few months but does the data label suggest to readers that HBO fan accounts as a group tend to quickly attain high number of followers?

***

The second chart, which is an inset of the first, attempts to quantify the effect of the Musk acquisition on the number of "registrations and subscriptions". In the first chart, the story was described as "Elon Musk buys Twitter sparking waves of new users who later sign up for Twitter Blue".

Nyt_twitterblue_chart2

The second chart confuses me. I was trying to figure out what is counted in the vertical axis. This was before I noticed the inset in the first chart, easy to miss as it is tucked into the lower right corner. I had presumed that the axis would be the same as in the first chart since there weren't any specific labels. In that case, I am looking at accounts with 0 to 500 followers, pretty inconsequential accounts. Then, the chart title uses the words "registrations and subscriptions." If the blue dots on this chart also refer to blue-check accounts as in the first chart, then I fail to see how this chart conveys any information about registrations (wbich presumably would include free accounts). As before, new accounts that aren't blue checks won't appear.

Further, to the extent that this chart shows a surge in subscriptions, we are restricted to accounts with fewer than 500 followers, and it's really unclear what proportion of total subscribers is depicted. Nor is it possible to estimate the magnitude of this surge.

Besides, I'm seeing similar densities of the dots across the entire time window between October 2021 and 2022. Perhaps the entire surge is hidden behind the black lines indicating the specific days when Musk announced and completed the acquisition, respectively. If the surge is hiding behind the black vertical lines, then this design manages to block the precise spots readers are supposed to notice.

Here is where we can use the self-sufficiency test. Imagine the same chart without the text. What story would you have learned from the graphical elements themselves? Not much, in my view.

***

The third chart isn't more insightful. This chart purportedly shows suspended accounts, only among blue-check accounts.

Nyt_twitterblue_chart3

From what I could gather (and what I know about Twitter's API), the chart shows any Twitter Blue account that got suspended at any time. For example, all the black open circles occurring prior to October 27, 2022 represent suspensions by the previous management, and presumably have nothing to do with Elon Musk, or his decision to turn blue checks into a subscription product.

There appears to be a cluster of suspensions since Musk took over. I am not sure what that means. Certainly, it says he's not about "total freedom". Most of these suspended accounts have fewer than 50 followers, and only been around for a few weeks. And as before, I'm not sure why the analyst decided to focus on accounts with fewer than 500 followers.

What could have been? Given the number of suspended accounts are relatively small, an interesting analysis would be to form clusters of suspended accounts, and report on the change in what types of accounts got suspended before and after the change of management.

***

The online article (link) is longer, filling in some details missing from the printed edition.

There is one view that shows the larger accounts:

Nyt_twitterblue_largestaccounts

While more complete, this view isn't very helpful as the biggest accounts are located in the sparsest area of the chart. The data labels again pick out strange accounts like those of adult film stars and an Arabic news site. It's not clear if the designer is trying to tell us that most of Twitter Blue accounts belong to those categories.

***
See here for commentary on other New York Times graphics.

 

 

 

 


Energy efficiency deserves visual efficiency

Long-time contributor Aleksander B. found a good one, in the World Energy Outlook Report, published by IEA (International Energy Agency).

Iea_balloonchart_emissions

The use of balloons is unusual, although after five minutes, I decided I must do some research to have any hope of understanding this data visualization.

A lot is going on. Below, I trace my own journey through this chart.

The text on the top left explains that the chart concerns emissions and temperature change. The first set of balloons (the grey ones) includes helpful annotations. The left-right position of the balloons indicates time points, in 10-year intervals except for the first.

The trapezoid that sits below the four balloons is more mysterious. It's labelled "median temperature rise in 2100". I debate two possibilities: (a) this trapezoid may serve as the fifth balloon, extending the time series from 2050 to 2100. This interpretation raises a couple of questions: why does the symbol change from balloon to trapezoid? why is the left-right time scale broken? (b) this trapezoid may represent something unrelated to the balloons. This interpretation also raises questions: its position on the horizontal axis still breaks the time series; and  if the new variable is "median temperature rise", then what determines its location on the chart?

That last question is answered if I move my glance all the way to the right edge of the chart where there are vertical axis labels. This axis is untitled but the labels shown in degree Celsius units are appropriate for "median temperature rise".

Turning to the balloons, I wonder what the scale is for the encoded emissions data. This is also puzzling because only a few balloons wear data labels, and a scale is nowhere to be found.

Iea_balloonchart_emissions_legend

The gridlines suggests that the vertical location of the balloons is meaningful. Tracing those gridlines to the right edge leads me back to the Celsius scale, which seems unrelated to emissions. The amount of emissions is probably encoded in the sizes of the balloons although none of these four balloons have any data labels so I'm rather flustered. My attention shifts to the colored balloons, a few of which are labelled. This confirms that the size of the balloons indeed measures the amount of emissions. Nevertheless, it is still impossible to gauge the change in emissions for the 10-year periods.

The colored balloons rising above, way above, the gridlines is an indication that the gridlines may lack a relationship with the balloons. But in some charts, the designer may deliberately use this device to draw attention to outlier values.

Next, I attempt to divine the informational content of the balloon strings. Presumably, the chart is concerned with drawing the correlation between emissions and temperature rise. Here I'm also stumped.

I start to look at the colored balloons. I've figured out that the amount of emissions is shown by the balloon size but I am still unclear about the elevation of the balloons. The vertical locations of these balloons change over time, hinting that they are data-driven. Yet, there is no axis, gridline, or data label that provides a key to its meaning.

Now I focus my attention on the trapezoids. I notice the labels "NZE", "APS", etc. The red section says "Pre-Paris Agreement" which would indicate these sections denote periods of time. However, I also understand the left-right positions of same-color balloons to indicate time progression. I'm completely lost. Understanding these labels is crucial to understanding the color scheme. Clearly, I have to read the report itself to decipher these acronyms.

The research reveals that NZE means "net zero emissions", which is a forecasting scenario - an utterly unrealistic one - in which every country is assumed to fulfil fully its obligations, a sort of best-case scenario but an unattainable optimum. APS and STEPS embed different assumptions about the level of effort countries would spend on reducing emissions and tackling global warming.

At this stage, I come upon another discovery. The grey section is missing any acronym labels. It's actually the legend of the chart. The balloon sizes, elevations, and left-right positions in the grey section are all arbitrary, and do not represent any real data! Surprisingly, this legend does not contain any numbers so it does not satisfy one of the traditional functions of a legend, which is to provide a scale.

There is still one final itch. Take a look at the green section:

Iea_balloonchart_emissions_green

What is this, hmm, caret symbol? It's labeled "Net Zero". Based on what I have been able to learn so far, I associate "net zero" to no "emissions" (this suggests they are talking about net emissions not gross emissions). For some reason, I also want to associate it with zero temperature rise. But this is not to be. The "net zero" line pins the balloon strings to a level of roughly 2.5 Celsius rise in temperature.

Wait, that's a misreading of the chart because the projected net temperature increase is found inside the trapezoid, meaning at "net zero", the scientists expect an increase in 1.5 degrees Celsius. If I accept this, I come face to face with the problem raised above: what is the meaning of the vertical positioning of the balloons? There must be a reason why the balloon strings are pinned at 2.5 degrees. I just have no idea why.

I'm also stealthily presuming that the top and bottom edges of the trapezoids represent confidence intervals around the median temperature rise values. The height of each trapezoid appears identical so I'm not sure.

I have just learned something else about this chart. The green "caret" must have been conceived as a fully deflated balloon since it represents the value zero. Its existence exposes two limitations imposed by the chosen visual design. Bubbles/circles should not be used when the value of zero holds significance. Besides, the use of balloon strings to indicate four discrete time points breaks down when there is a scenario which involves only three buoyant balloons.

***

The underlying dataset has five values (four emissions, one temperature rise) for four forecasting scenarios. It's taken a lot more time to explain the data visualization than to just show readers those 20 numbers. That's not good!

I'm sure the designer did not set out to confuse. I think what happened might be that the design wasn't shown to potential readers for feedback. Perhaps they were shown only to insiders who bring their domain knowledge. Insiders most likely would not have as much difficulty with reading this chart as did I.

This is an important lesson for using data visualization as a means of communications to the public. It's easy for specialists to assume knowledge that readers won't have.

For the IEA chart, here is a list of things not found explicitly on the chart that readers have to know in order to understand it.

  • Readers have to know about the various forecasting scenarios, and their acronyms (APS, NZE, etc.). This allows them to interpret the colors and section titles on the chart, and to decide whether the grey section is missing a scenario label, or is a legend.
  • Since the legend does not contain any scale information, neither for the balloon sizes nor for the temperatures, readers have to figure out the scales on their own. For temperature, they first learn from the legend that the temperature rise information is encoded in the trapezoid, then find the vertical axis on the right edge, notice that this axis has degree Celsius units, and recognize that the Celsius scale is appropriate for measuring median temperature rise.
  • For the balloon size scale, readers must resist the distracting gridlines around the grey balloons in the legend, notice the several data labels attached to the colored balloons, and accept that the designer has opted not to provide a proper size scale.

Finally, I still have several unresolved questions:

  • The horizontal axis may have no meaning at all, or it may only have meaning for emissions data but not for temperature
  • The vertical positioning of balloons probably has significance, or maybe it doesn't
  • The height of the trapezoids probably has significance, or maybe it doesn't

 

 


A graphical compass

A Twitter user pointed me to this article from Washington Post, ruminating about the correlation between gas prices and measures of political sentiment (such as Biden's approval rating or right-track-wrong-track). As common in this genre, the analyst proclaims that he has found something "counter intuitive".

The declarative statement strikes me as odd. In the first two paragraphs, he said the data showed "as gas prices fell, American optimism rose. As prices rose, optimism fell... This seems counterintuitive."

I'm struggling to see what's counterintuitive. Aren't the data suggesting people like lower prices? Is that not what we think people like?

The centerpiece of the article concerns the correlation between metrics. "If two numbers move in concert, they can be depicted literally moving in concert. One goes up, the other moves either up or down consistently." That's a confused statement and he qualifies it by typing "That sort of thing."

He's reacting to the following scatter plot with lines. The Twitter user presumably found it hard to understand. Count me in.

Washingtonpost_gasprices

Why is this chart difficult to grasp?

The biggest puzzle is: what differentiates those two lines? The red and the gray lines are not labelled. One would have to consult the article to learn that the gray line represents the "raw" data at weekly intervals. The red line is aggregated data at monthly intervals. In other words, each red dot is an average of 4 or 5 weekly data points. The red line is just a smoothed version of the gray line. Smoothed lines show the time trend better.

The next missing piece is the direction of time, which can only be inferred by reading the month labels on the red line. But the chart without the direction of time is like a map without a compass. Take this segment for example:

Wpost_gaspricesapproval_directionoftime

If time is running up to down, then approval ratings are increasing over time while gas prices are decreasing. If time is running down to up, then approval ratings are decreasing over time while gas prices are increasing. Exactly the opposite!

The labels on the red line are not sufficient. It's possible that time runs in the opposite direction on the gray line! We only exclude that possibility if we know that the red line is a smoothed version of the gray line.

This type of chart benefits from having a compass. Here's one:

Wpost_gaspricesapproval_compass

It's useful for readers to know that the southeast direction is "good" (higher approval ratings, lower gas prices) while the northwest direction is "bad". Going back to the original chart, one can see that the metrics went in the "bad" direction at the start of the year and has reverted to a "good" direction since.

***

What does this chart really say? The author remarked that "correlation is not causation". "Just because Biden’s approval rose as prices dropped doesn’t mean prices caused the drop."

Here's an alternative: People have general sentiments. When they feel good, they respond more positively to polls, as in they rate everything more positively. The approval ratings are at least partially driven by this general sentiment. The same author apparently has another article saying that the right-track-wrong-track sentiment also moved in tandem with gas prices.

One issue with this type of scatter plot is that it always cues readers to make an incorrect assumption: that the outcome variables (approval rating) is solely - or predominantly - driven by the one factor being visualized (gas prices). This visual choice completely biases the reader's perception.

P.S. [11-11-22] The source of the submission was incorrectly attributed.


Trying too hard

Today, I return to the life expectancy graphic that Antonio submitted. In a previous post, I looked at the bumps chart. The centerpiece of that graphic is the following complicated bar chart.

Aburto_covid_lifeexpectancy

Let's start with the dual axes. On the left, age, and on the right, year of birth. I actually like this type of dual axes. The two axes present two versions of the same scale so the dual axes exist without distortion. It just allows the reader to pick which scale they want to use.

It baffles me that the range of each bar runs from 2.5 years to 7.5 years or 7.5 years to 2.5 years, with 5 or 10 years situated in the middle of each bar.

Reading the rest of the chart is like unentangling some balled up wires. The author has created a statistical model that attributes cause of death to male life expectancy in such a way that you can take the difference in life expectancy between two time points, and do a kind of waterfall analysis in which each cause of death either adds to or subtracts from the prior life expectancy, with the sum of these additions and substractions leading to the end-of-period life expectancy.

The model is complicated enough, and the chart doesn't make it any easier.

The bars are rooted at the zero value. The horizontal axis plots addition or substraction to life expectancy, thus zero represents no change during the period. Zero does not mean the cause of death (e.g. cancer) does not contribute to life expectancy; it just means the contribution remains the same.

The changes to life expectancy are shown in units of months. I'd prefer to see units of years because life expectancy is almost always given in years. Using years turn 2.5 months into 0.2 years which is a fraction, but it allows me to see the impact on the reported life expectancy without having to do a month-to-year conversion.

The chart highlights seven causes of death with seven different colors, plus gray for others.

What really does a number on readers is the shading, which adds another layer on top of the hues. Each color comes in one of two shading, referencing two periods of time. The unshaded bar segments concern changes between 2010 and "2019" while the shaded segments concern changes between "2019" and 2020. The two periods are chosen to highlight the impact of COVID-19 (the red-orange color), which did not exist before "2019".

Let's zoom in on one of the rows of data - the 72.5 to 77.5 age group.

Screen Shot 2022-09-14 at 1.06.59 PM

COVID-19 (red-orange) has a negative impact on life expectancy and that's the easy one to see. That's because COVID-19's contribution as a cause of death is exactly zero prior to "2019". Thus, the change in life expectancy is a change from zero. This is not how we can interpret any of the other colors.

Next, we look at cancer (blue). Since this bar segment sits on the right side of zero, cancer has contributed positively to change in life expectancy between 2010 and 2020. Practically, that means proportionally fewer people have died from cancer. Since the lengths of these bar segments correspond to the relative value, not absolute value, of life expectancy, longer bars do not necessarily indicate more numerous deaths.

Now the blue segment is actually divided into two parts, the shaded and not shaded. The not-shaded part is for the period "2019" to 2020 in the first year of the COVID-19 pandemic. The shaded part is for the period 2010 to "2019". It is a much wider span but it also contains 9 years of changes versus "1 year" so it's hard to tell if the single-year change is significantly different from the average single-year change of the past 9 years. (I'm using these quotes because I don't know whether they split the year 2019 in the middle since COVID-19 didn't show up till the end of that year.)

Next, we look at the yellow-brown color correponding to CVD. The key feature is that this block is split into two parts, one positive, one negative. Prior to "2019", CVD has been contributing positively to life expectancy changes while after "2019", it has contributed negatively. This observation raises some questions: why would CVD behave differently with the arrival of the pandemic? Are there data problems?

***

A small multiples design - splitting the period into two charts - may help here. To make those two charts comparable, I'd suggest annualizing the data so that the 9-year numbers represent the average annual values instead of the cumulative values.

 

 


Here's a radar chart that works, sort of

In the same Reuters article that featured the speedometer chart which I discussed in this blog post (link), the author also deployed a small multiples of radar charts.

These radar charts are supposed to illustrate the article's theme that "European countries are racing to fill natural gas storage sites ahead of winter."

Here's the aggregate chart that shows all countries:

Reuters_gastorage_radar_details

In general, I am not a fan of radar charts. When I first looked at this chart, I also disliked it. But keep reading because I eventually decided that this usage is an exception. One just needs to figure out how to read it.

One reason why I dislike radar charts is that they always come with a lot of non-data-ink baggage. We notice that the months of the year are plotted in a circle starting at the top. They marked off the start of the war on Feb 24, 2022 in red. Then, they place the dotted circle, which represents the 80% target gas storage amount.

The trick is to avoid interpreting the areas, or the shapes of the blue and gray patches. I know, they look cool and grab our attention but in the context of conveying data, they are meaningless.

Redo_reuters_eugasradarall_1Instead of areas, focus on the boundaries of those patches. Don't follow one boundary around the circle. Pick a point in time, corresponding to a line between the center of the circle and the outermost circle, and look at the gap between the two lines. In the diagram shown right, I marked off the two relevant points on the day of the start of the war.

From this, we observe that across Europe, the gas storage was far less than the 80% target (recently set).

By comparing two other points (the blue and gray boundaries), we see that during February, Redo_reuters_eugasradarall_2gas storage is at a seasonal low, and in 2022, it is on the low side of the 5-year average. 

However, the visual does not match well with the theme of the article! While the gap between the blue and gray boundaries decreased since the start of the war, the blue boundary does not exceed the historical average, and does not get close to 80% until August, a month in which gas storage reaches 80% in a typical year.

This is example of a chart in which there is a misalignment between the Q and the V corners of the Trifecta Checkup (link).

_trifectacheckup_image

The question/message is that Europeans are reacting to the war by increasing their gas storage beyond normal. The visual actually says that they are increasing the gas storage as per normal.

***

As I noted before, when read in a particular way, these radar charts serve their purpose, which is more than can be said for most radar charts.

The designer made several wise choices:

Instead of drawing one ring for each year of data, the designer averaged the past 5 years and turned that into one single ring (patch). You can imagine what this radar chart would look like if the prior data were not averaged: hoola hoop mania!

Marawa-bgt

Simplifying the data in this way also makes the small multiples work. The designer uses the aggregate chart as a legend/how to read this. And in a further section below, the designer plots individual countries, without the non-data-ink baggage:

Reuters_gastorage_mosttofill

Thanks againto longtime reader Antonio R. who submitted this chart.

Happy Labor Day weekend for those in the U.S.!

 

 

 


Two uses of bumps charts

Long-time reader Antonio R. submitted the following chart, which illustrates analysis from a preprint on the effect of Covid-19 on life expectancy in the U.S. (link)

Aburto_covid_lifeexpectancy

Aburto_lifeexpectancyFor this post, I want to discuss the bumps chart on the lower right corner. Bumps charts are great at showing change over time. In this case, the authors are comparing two periods "2010-2019" and "2019-2020". By glancing at the chart, one quickly divides the causes of death into three groups: (a) COVID-19 and CVD, which experienced a big decline (b) respiratory, accidents, others ("rest"), and despair, which experienced increases, and (c) cancer and infectious, which remained the same.

And yet, something doesn't seem right.

What isn't clear is the measured quantity. The chart title says "months gained or lost" but it takes a moment to realize the plotted data are not number of months but ranks of the effects of the causes of deaths on life expectancy.

Observe that the distance between each cause of death is the same. Look at the first rising line (respiratory): the actual values went from 0.8 months down to 0.2.

***

While the canonical bumps chart plots ranks, the same chart form can be used to show numeric data. I prefer to use the same term for both charts. In recent years, the bumps chart showing numeric data has been called "slopegraph".

Here is a side-by-side comparison of the two charts:

Redo_aburto_covidlifeexpectancy

The one on the left is the same as the original. The one on the right plots the number of months increased or decreased.

The choice of chart form paints very different pictures. There are four blue lines on the left, indicating a relative increase in life expectancy - these causes of death contributed more to life expectancy between the two periods. Three of the four are red lines on the right chart. Cancer was shown as a flat line on the left - because it was the highest ranked item in both periods. The right chart shows that the numeric value for cancer suffered one of the largest drops.

The left chart exaggerates small numeric changes while it condenses large numeric changes.

 

 


Speedometer charts: love or hate

Pie chart hate is tired. In this post, I explain my speedometer hate. (Also called gauges,  dials)

Next to pie charts, speedometers are perhaps the second most beloved chart species found on business dashboards. Here is a typical example:

Speedometers_example

 

For this post, I found one on Reuters about natural gas in Europe. (Thanks to long-time contributor Antonio R. for the tip.)

Eugas_speedometer

The reason for my dislike is the inefficiency of this chart form. In classic Tufte-speak, the speedometer chart has a very poor data-to-ink ratio. The entire chart above contains just one datum (73%). Most of the ink are spilled over non-data things.

This single number has a large entourage:

- the curved axis
- ticks on the axis
- labels on the scale
- the dial
- the color segments
- the reference level "EU target"

These are not mere decorations. Taking these elements away makes it harder to understand what's on the chart.

Here is the chart without the curved axis:

Redo_eugas_noaxis

Here is the chart without axis labels:

Redo_eugas_noaxislabels

Here is the chart without ticks:

Redo_eugas_notickmarks

When the tick labels are present, the chart still functions.

Here is the chart without the dial:

Redo_eugas_nodial

The datum is redundantly encoded in the color segments of the "axis".

Here is the chart without the dial or the color segments:

Redo_eugas_nodialnosegments

If you find yourself stealing a peek at the chart title below, you're not alone.

All versions except one increases our cognitive load. This means the entourage is largely necessary if one encodes the single number in a speedometer chart.

The problem with the entourage is that readers may resort to reading the text rather than the chart.

***

The following is a minimalist version of the Reuters chart:

Redo_eugas_onedial

I removed the axis labels and the color segments. The number 73% is shown using the dial angle.

The next chart adds back the secondary message about the EU target, as an axis label, and uses color segments to show the 73% number.

Redo_eugas_nodialjustsegments

Like pie charts, there are limited situations in which speedometer charts are acceptable. But most of the ones we see out there are just not right.

***

One acceptable situation is to illustrate percentages or proportions, which is what the EU gas chart does. Of course, in that situation, one can alo use a pie chart without shame.

For illustrating proportions, I prefer to use a full semicircle, instead of the circular sector of arbitrary angle as Reuters did. The semicircle lends itself to easy marks of 25%, 50%, 75%, etc, eliminating the need to print those tick labels.

***

One use case to avoid is numeric data.

Take the regional sales chart pulled randomly from a Web search above:

Speedometers_example

These charts are completely useless without the axis labels.

Besides, because the span of the axis isn't 0% to 100%, every tick mark must be labelled with the numeric value. That's a lot of extra ink used to display a single value!


Another reminder that aggregate trends hide information

The last time I looked at the U.S. employment situation, it was during the pandemic. The data revealed the deep flaws of the so-called "not in labor force" classification. This classification is used to dehumanize unemployed people who are declared "not in labor force," in which case they are neither employed nor unemployed -- just not counted at all in the official unemployment (or employment) statistics.

The reason given for such a designation was that some people just have no interest in working, or even looking for a job. Now they are not merely discouraged - as there is a category of those people. In theory, these people haven't been looking for a job for so long that they are no longer visible to the bean counters at the Bureau of Labor Statistics.

What happened when the pandemic precipitated a shutdown in many major cities across America? The number of "not in labor force" shot up instantly, literally within a few weeks. That makes a mockery of the reason for such a designation. See this post for more.

***

The data we saw last time was up to April, 2020. That's more than two years old.

So I have updated the charts to show what has happened in the last couple of years.

Here is the overall picture.

Junkcharts_unemployment_notinLFparttime_all_2

In this new version, I centered the chart at the 1990 data. The chart features two key drivers of the headline unemployment rate - the proportion of people designated "invisible", and the proportion of those who are considered "employed" who are "part-time" workers.

The last two recessions have caused structural changes to the labor market. From 1990 to late 2000s, which included the dot-com bust, these two metrics circulated within a small area of the chart. The Great Recession of late 2000s led to a huge jump in the proportion called "invisible". It also pushed the proportion of part-timers to all0time highs. The proportion of part-timers has fallen although it is hard to interpret from this chart alone - because if the newly invisible were previously part-time employed, then the same cause can be responsible for either trend.

_numbersense_bookcoverReaders of Numbersense (link) might be reminded of a trick used by school deans to pump up their US News rankings. Some schools accept lots of transfer students. This subpopulation is invisible to the US News statisticians since they do not factor into the rankings. The recent scandal at Columbia University also involves reclassifying students (see this post).

Zooming in on the last two years. It appears that the pandemic-related unemployment situation has reversed.

***

Let's split the data by gender.

American men have been stuck in a negative spiral since the 1990s. With each recession, a higher proportion of men are designated BLS invisibles.

Junkcharts_unemployment_notinLFparttime_men_2

In the grid system set up in this scatter plot, the top right corner is the worse of all worlds - the work force has shrunken and there are more part-timers among those counted as employed. The U.S. men are not exiting this quadrant any time soon.

***
What about the women?

Junkcharts_unemployment_notinLFparttime_women_2

If we compare 1990 with 2022, the story is not bad. The female work force is gradually reaching the same scale as in 1990 while the proportion of part-time workers have declined.

However, celebrating the above is to ignore the tremendous gains American women made in the 1990s and 2000s. In 1990, only 58% of women are considered part of the work force - the other 42% are not working but they are not counted as unemployed. By 2000, the female work force has expanded to include about 60% with similar proportions counted as part-time employed as in 1990. That's great news.

The Great Recession of the late 2000s changed that picture. Just like men, many women became invisible to BLS. The invisible proportion reached 44% in 2015 and have not returned to anywhere near the 2000 level. Fewer women are counted as part-time employed; as I said above, it's hard to tell whether this is because the women exiting the work force previously worked part-time.

***

The color of the dots in all charts are determined by the headline unemployment number. Blue represents low unemployment. During the 1990-2022 period, there are three moments in which unemployment is reported as 4 percent or lower. These charts are intended to show that an aggregate statistic hides a lot of information. The three times at which unemployment rate reached historic lows represent three very different situations, if one were to consider the sizes of the work force and the number of part-time workers.

 

P.S. [8-15-2022] Some more background about the visualization can be found in prior posts on the blog: here is the introduction, and here's one that breaks it down by race. Chapter 6 of Numbersense (link) gets into the details of how unemployment rate is computed, and the implications of the choices BLS made.

P.S. [8-16-2022] Corrected the axis title on the charts (see comment below). Also, added source of data label.


What does Elon Musk do every day?

The Wall Street Journal published a fun little piece about tweets by Elon Musk (link).

Here is an overview of every tweet he sent since he started using Twitter more than a decade ago.

Wsj_musk_tweets_alldaylong2
Apparently, he sent at least one tweet almost every day for the last four years. In addition, his tweets appear at all hours of the day. (Presumably, he is not the only one tweeting from his account.)

He doesn't just spend time writing tweets; he also reads other people's tweets. WSJ finds that up to 80% of his tweets include mentions of other users.

Wsj_musk_tweets_mentionsothers7

***

One problem with "big data" analytics is that they often don't answer interesting questions. Twitter is already one of the companies that put more of their data out there, but still, analysts are missing some of the most important variables.

We know that Musk has 93 million followers. We already know from recent news that a large proportion of such users may be spam/fake. It is frequently assumed in twitter analysis that any tweet he makes reaches 93 million accounts. That's actually far from correct. Twitter uses algorithms to decide what posts show up in each user's feed so we have no idea how many of the 93 million accounts are in fact exposed to any of Musk's tweets.

Further, not every user reads everything on their Twitter feed. I don't even check it every day. Because Twitter operates as a 'firehose" with ever-changing content as users send out short messages at all hours, what one sees depends on when one reads. If Musk tweets in the morning, the users who log on in the afternoon won't see it.

Let's say an analyst wants to learn how impactful Musk's tweets are. That's pretty difficult when one can't figure out which of the 93 million followers were shown these tweets, and who read them. The typical data used to measure response are retweets and likes. Those are convenient metrics because they are available. They are very limited in what they measure. There are lots of users who don't like or retweet at all.

***

The available data do make for some fun charts. This one gave me a big smile:

Wsj_musk_tweets_emojis9

Between writing tweets, reading tweets, and ROTFL, every hour of almost every day, Musk finds time to run his several companies. That's impressive.

 


Selecting the right analysis plan is the first step to good dataviz

It's a new term, and my friend Ray Vella shared some student projects from his NYU class on infographics. There's always something to learn from these projects.

The starting point is a chart published in the Economist a few years ago.

Economist_richgetricher

This is a challenging chart to read. To save you the time, the following key points are pertinent:

a) income inequality is measured by the disparity between regional averages

b) the incomes are given in a double index, a relative measure. For each country and year combination, the average national GDP is set to 100. A value of 150 means the richest region of Spain has an average income that is 50% higher than Spain's national average in the year 2015.

The original chart - as well as most of the student work - is based on a specific analysis plan. The difference in the index values between the richest and poorest regions is used as a measure of the degree of income inequality, and the change in the difference in the index values over time, as a measure of change in the degree of income inequality over time. That's as big a mouthful as the bag of words sounds.

This analysis plan can be summarized as:

1) all incomes -> relative indices, at each region-year combination
2) inequality = rich - poor region gap, at each region-year combination
3) inequality over time = inequality in 2015 - inequality in 2000, for each country
4) country difference = inequality in country A - inequality in country B, for each year

***

One student, J. Harrington, looks at the data through an alternative lens that brings clarity to the underlying data. Harrington starts with change in income within the richest regions (then the poorest regions), so that a worsening income inequality should imply that the richest region is growing incomes at a faster clip than the poorest region.

This alternative analysis plan can be summarized as:
1) change in income over time for richest regions for each country
2) change in income over time for poorest regions for each country
3) inequality = change in income over time: rich - poor, for each country

The restructuring of the analysis plan makes a big difference!

Here is one way to show this alternative analysis:

Junkcharts_kfung_sixeurocountries_gdppercapita

The underlying data have not changed but the reader's experience is transformed.