Another reminder that aggregate trends hide information

The last time I looked at the U.S. employment situation, it was during the pandemic. The data revealed the deep flaws of the so-called "not in labor force" classification. This classification is used to dehumanize unemployed people who are declared "not in labor force," in which case they are neither employed nor unemployed -- just not counted at all in the official unemployment (or employment) statistics.

The reason given for such a designation was that some people just have no interest in working, or even looking for a job. Now they are not merely discouraged - as there is a category of those people. In theory, these people haven't been looking for a job for so long that they are no longer visible to the bean counters at the Bureau of Labor Statistics.

What happened when the pandemic precipitated a shutdown in many major cities across America? The number of "not in labor force" shot up instantly, literally within a few weeks. That makes a mockery of the reason for such a designation. See this post for more.

***

The data we saw last time was up to April, 2020. That's more than two years old.

So I have updated the charts to show what has happened in the last couple of years.

Here is the overall picture.

Junkcharts_unemployment_notinLFparttime_all_2

In this new version, I centered the chart at the 1990 data. The chart features two key drivers of the headline unemployment rate - the proportion of people designated "invisible", and the proportion of those who are considered "employed" who are "part-time" workers.

The last two recessions have caused structural changes to the labor market. From 1990 to late 2000s, which included the dot-com bust, these two metrics circulated within a small area of the chart. The Great Recession of late 2000s led to a huge jump in the proportion called "invisible". It also pushed the proportion of part-timers to all0time highs. The proportion of part-timers has fallen although it is hard to interpret from this chart alone - because if the newly invisible were previously part-time employed, then the same cause can be responsible for either trend.

_numbersense_bookcoverReaders of Numbersense (link) might be reminded of a trick used by school deans to pump up their US News rankings. Some schools accept lots of transfer students. This subpopulation is invisible to the US News statisticians since they do not factor into the rankings. The recent scandal at Columbia University also involves reclassifying students (see this post).

Zooming in on the last two years. It appears that the pandemic-related unemployment situation has reversed.

***

Let's split the data by gender.

American men have been stuck in a negative spiral since the 1990s. With each recession, a higher proportion of men are designated BLS invisibles.

Junkcharts_unemployment_notinLFparttime_men_2

In the grid system set up in this scatter plot, the top right corner is the worse of all worlds - the work force has shrunken and there are more part-timers among those counted as employed. The U.S. men are not exiting this quadrant any time soon.

***
What about the women?

Junkcharts_unemployment_notinLFparttime_women_2

If we compare 1990 with 2022, the story is not bad. The female work force is gradually reaching the same scale as in 1990 while the proportion of part-time workers have declined.

However, celebrating the above is to ignore the tremendous gains American women made in the 1990s and 2000s. In 1990, only 58% of women are considered part of the work force - the other 42% are not working but they are not counted as unemployed. By 2000, the female work force has expanded to include about 60% with similar proportions counted as part-time employed as in 1990. That's great news.

The Great Recession of the late 2000s changed that picture. Just like men, many women became invisible to BLS. The invisible proportion reached 44% in 2015 and have not returned to anywhere near the 2000 level. Fewer women are counted as part-time employed; as I said above, it's hard to tell whether this is because the women exiting the work force previously worked part-time.

***

The color of the dots in all charts are determined by the headline unemployment number. Blue represents low unemployment. During the 1990-2022 period, there are three moments in which unemployment is reported as 4 percent or lower. These charts are intended to show that an aggregate statistic hides a lot of information. The three times at which unemployment rate reached historic lows represent three very different situations, if one were to consider the sizes of the work force and the number of part-time workers.

 

P.S. [8-15-2022] Some more background about the visualization can be found in prior posts on the blog: here is the introduction, and here's one that breaks it down by race. Chapter 6 of Numbersense (link) gets into the details of how unemployment rate is computed, and the implications of the choices BLS made.

P.S. [8-16-2022] Corrected the axis title on the charts (see comment below). Also, added source of data label.


Visualizing the impossible

Note [July 6, 2022]: Typepad's image loader is broken yet again. There is no way for me to fix the images right now. They are not showing despite being loaded properly yesterday. I also cannot load new images. Apologies!

Note 2: Manually worked around the automated image loader.

Note 3: Thanks Glenn for letting me about the image loading problem. It turns out the comment approval function is also broken, so I am not able to approve the comment.

***

A twitter user sent me this chart:

twitter_greatreplacement

It's, hmm, mystifying. It performs magic, as I explain below.

What's the purpose of the gridlines and axis labels? Even if there is a rationale for printing those numbers, they make it harder, not easier, for readers to understand the chart!

I think the following chart shows the main message of this poll result. Democrats are much more likely to think of immigration as a positive compared to Republicans, with Independents situated in between.

Redo_greatreplacement

***

The axis title gives a hint as to what the chart designer was aiming for with the unconventional axis. It reads "Overall Percentage for All Participants". It appears that the total length of the stacked bar is the weighted aggregate response rate. Roughly 17% of Americans thought this development to be "very positive" which include 8% of Republicans, 27% of Democrats and 12% of Independents. Since the three segments are not equal in size, 17% is a weighted average of the three proportions.

Within each of the three political affiliations, the data labels add to 100%. These numbers therefore are unweighted response rates for each segment. (If weighted, they should add up to the proportion of each segment.)

This sets up an impossible math problem. The three segments within each bar then represent the sum of three proportions, each unweighted within its segment. Adding these unweighted proportions does not yield the desired weighted average response rate. To get the weighted average response rate, we need to sum the weighted segment response rates instead.

This impossible math problem somehow got resolved visually. We can see that each bar segment faithfully represent the unweighted response rates shown in the respective data labels. Summing them would not yield the aggregate response rates as shown on the axis title. The difference is not a simple multiplicative constant because each segment must be weighted by a different multiplier. So, your guess is as good as mine: what is the magic that makes the impossible possible?

[P.S. Another way to see this inconsistency. The sum of all the data labels is 300% because the proportions of each segment add up to 100%. At the same time, the axis title implies that the sum of the lengths of all five bars should be 100%. So, the chart asserts that 300% = 100%.]

***

This poll question is a perfect classroom fodder to discuss how wording of poll questions affects responses (something called "response bias"). Look at the following variants of the same questions. Are we likely to get answers consistent with the above question?

As you know, the demographic makeup of America is changing and becoming more diverse, while the U.S. Census estimates that white people will still be the largest race in approximately 25 years. Generally speaking, do you find these changes to be very positive, somewhat positive, somewhat negative or very negative?

***

As you know, the demographic makeup of America is changing and becoming more diverse, with the U.S. Census estimating that black people will still be a minority in approximately 25 years. Generally speaking, do you find these changes to be very positive, somewhat positive, somewhat negative or very negative?

***

As you know, the demographic makeup of America is changing and becoming more diverse, with the U.S. Census estimating that Hispanic, black, Asian and other non-white people together will be a majority in approximately 25 years. Generally speaking, do you find these changes to be very positive, somewhat positive, somewhat negative or very negative?

What is also amusing is that in the world described by the pollster in 25 years, every race will qualify as a "minority". There will be no longer majority since no race will constitute at least 50% of the U.S. population. So at that time, the word "minority" will  have lost meaning.


Selecting the right analysis plan is the first step to good dataviz

It's a new term, and my friend Ray Vella shared some student projects from his NYU class on infographics. There's always something to learn from these projects.

The starting point is a chart published in the Economist a few years ago.

Economist_richgetricher

This is a challenging chart to read. To save you the time, the following key points are pertinent:

a) income inequality is measured by the disparity between regional averages

b) the incomes are given in a double index, a relative measure. For each country and year combination, the average national GDP is set to 100. A value of 150 means the richest region of Spain has an average income that is 50% higher than Spain's national average in the year 2015.

The original chart - as well as most of the student work - is based on a specific analysis plan. The difference in the index values between the richest and poorest regions is used as a measure of the degree of income inequality, and the change in the difference in the index values over time, as a measure of change in the degree of income inequality over time. That's as big a mouthful as the bag of words sounds.

This analysis plan can be summarized as:

1) all incomes -> relative indices, at each region-year combination
2) inequality = rich - poor region gap, at each region-year combination
3) inequality over time = inequality in 2015 - inequality in 2000, for each country
4) country difference = inequality in country A - inequality in country B, for each year

***

One student, J. Harrington, looks at the data through an alternative lens that brings clarity to the underlying data. Harrington starts with change in income within the richest regions (then the poorest regions), so that a worsening income inequality should imply that the richest region is growing incomes at a faster clip than the poorest region.

This alternative analysis plan can be summarized as:
1) change in income over time for richest regions for each country
2) change in income over time for poorest regions for each country
3) inequality = change in income over time: rich - poor, for each country

The restructuring of the analysis plan makes a big difference!

Here is one way to show this alternative analysis:

Junkcharts_kfung_sixeurocountries_gdppercapita

The underlying data have not changed but the reader's experience is transformed.


The what of visualization, beyond the how

A long-time reader sent me the following chart from a Nature article, pointing out that it is rather worthless.

Nautre_scihub

The simple bar chart plots the number of downloads, organized by country, from the website called Sci-Hub, which I've just learned is where one can download scientific articles for free - working around the exorbitant paywalls of scientific journals.

The bar chart is a good example of a Type D chart (Trifecta Checkup). There is nothing wrong with the purpose or visual design of the chart. Nevertheless, the chart paints a misleading picture. The Nature article addresses several shortcomings of the data.

The first - and perhaps most significant - problem is that many Sci-Hub users are expected to access the site via VPN servers that hide their true countries of origin. If the proportion of VPN users is high, the entire dataset is called into doubt. The data would contain both false positives (in countries with VPN servers) and false negatives (in countries with high numbers of VPN users). 

The second problem is seasonality. The dataset covered only one month. Many users are expected to be academics, and in the southern hemisphere, schools are on summer vacation in January and February. Thus, the data from those regions may convey the wrong picture.

Another problem, according to the Nature article, is that Sci-Hub has many competitors. "The figures include only downloads from original Sci-Hub websites, not any replica or ‘mirror’ site, which can have high traffic in places where the original domain is banned."

This mirror-site problem may be worse than it appears. Yes, downloads from Sci-Hub underestimate the entire market for "free" scientific articles. But these mirror sites also inflate Sci-Hub statistics. Presumably, these mirror sites obtain their inventory from Sci-Hub by setting up accounts, thus contributing lots of downloads.

***

Even if VPN and seasonality problems are resolved, the total number of downloads should be adjusted for population. The most appropriate adjustment factor is the population of scientists, but that statistic may be difficult to obtain. A useful proxy might be the number of STEM degrees by country - obtained from a UNESCO survey (link).

A metric of the type "number of Sci-Hub downloads per STEM degree" sounds odd and useless. I'd argue it's better than the unadjusted total number of Sci-Hub downloads. Just don't focus on the absolute values but the relative comparisons between countries. Even better, we can convert the absolute values into an index to focus attention on comparisons.

 


Best chart I have seen this year

Marvelling at this chart:

 

***

The credit ultimately goes to a Reddit user (account deleted). I first saw it in this nice piece of data journalism by my friends at System 2 (link). They linked to Visual Capitalism (link).

There are so many things on this one chart that makes me smile.

The animation. The message of the story is aging population. Average age is moving up. This uptrend is clear from the chart, as the bulge of the population pyramid is migrating up.

The trend happens to be slow, and that gives the movement a mesmerizing, soothing effect.

Other items on the chart are synced to the time evolution. The year label on the top but also the year labels on the right side of the chart, plus the counts of total population at the bottom.

OMG, it even gives me average age, and life expectancy, and how those statistics are moving up as well.

Even better, the designer adds useful context to the data: look at the names of the generations paired with the birth years.

This chart is also an example of dual axes that work. Age, birth year and current year are connected to each other, and given two of the three, the third is fixed. So even though there are two vertical axes, there is only one scale.

The only thing I'm not entirely convinced about is placing the scroll bar on the very top. It's a redundant piece that belongs to a less prominent part of the chart.


Getting to first before going to second

Happy holidays to all my readers! A special shutout to those who've been around for over 15 years.

***

The following enhanced data table appeared in Significance magazine (August 2021) under an article titled "Winning an election, not a popularity contest" (link, paywalled)

Sig_electoralcollege-smIt's surprising hard to read and there are many reasons contributing to this.

First is the antiquated style guide of academic journals, in which they turn legends into text, and insert the text into a caption. This is one of the worst journalistic practices that continue to be followed.

The table shows 50 states plus District of Columbia. The authors are interested in the extreme case in which a hypothetical U.S. presidential candidate wins the electoral college with the lowest possible popular vote margin. If you've been following U.S. presidential politics, you'd know that the electoral college effectively deflates the value of big-city votes so that the electoral vote margin can be a lot larger than the popular vote margin.

The two sub-tables show two different scenarios: Scenario A is a configuration computed by NPR in one of their reports. Scenario B is a configuration created by the authors (Leinwand, et. al.).

The table cells are given one of four colors: green = needed in the winning configuration; white = not needed; yellow = state needed in Scenario B but not in Scenario A; grey = state needed in Scenario A but not in Scenario B.

***

The second problem is that the above description of the color legend is not quite correct. Green, it turns out, is only correctly explained for Scenario A. Green for Scenario B encodes those states that are needed for the candidate to win the electoral college in Scenario B minus those states that are needed in Scenario B but not in Scenario A (shown in yellow). There is a similar problem with interpreting the white color in the table for Scenario B.

To fix this problem, start with the Q corner of the Trifecta Checkup.

_trifectacheckup_image

The designer wants to convey an interlocking pair of insights: the winning configuration of states for each of the two scenarios; and the difference between those two configurations.

The problem with the current design is that it elevates the second insight over the first. However, the second insight is a derivative of the first so it's hard to get to the second spot without reaching the first.

The following revision addresses this problem:

Redo_sig_electoralcollege_corrected

[12/30/2021: Replaced chart and corrected the blue arrow for NJ.]

 

 


Check your presumptions while you're reading this chart about Israel's vaccination campaign

On July 30, Israel began administering third doses of mRNA vaccines to targeted groups of people. This decision was controversial since there is no science to support it. The policymakers do have educated guesses by experts based on best-available information. By science, I mean actual evidence. Since no one has previously been given three shots, there can be no data on which anyone can root such a decision. Nevertheless, the pandemic does not always give us time to collect relevant data, and so speculative analysis has found its calling.

Dvir Aran, at Technion, has been diligently tracking the situation in Israel on his Twitter. Ten days after July 30, he posted the following chart, which immediately led many commentators to bounce out of their seats crowning the third shot as a magic bullet. Notably, Dvir himself did not endorse such a claim. (See here to learn how other hasty conclusions by experts have fared.)

When you look at Dvir's chart, what do we see?

Dvir_aran_chart

Possibly one of the following two things, depending on what concern you have in your head.

1) The red line sits far above the other two lines, showing that unvaccinated people are much more likely to get infected.

2) The blue line diverges from the green line almost immediately after the 3rd shots started getting into arms, showing that the 3rd shot is super effective.

If you take another moment to look, you might start asking questions, as many in Twitter world did. Dvir was startlingly efficient at answering these queries.

A) Does the green line represent people with 2 or 3 doses, or is it strictly 2 doses? Aron asked this question and got the answer (the former):

AronBrand_israelcases_twoorthreedoses

It's time to check our presumptions. When you read that chart, did you presume it's exactly 2 doses or did you presume it's 2 or 3 doses? Or did you immediately spot the ambiguity? As I said in this article, graphs attain efficiency at communication because the designer leverages unspoken rules - the chart conveys certain information without explicitly placing it on the chart. But this can backfire. In this case, I presumed the three lines to display three non-overlapping groups of people, and thus the green line indicates those with 2 doses but not 3. That presumption led me to misinterpret what's on the chart.

B) What is the denominator of the case rates? Is it literal - by that I mean, all unvaccinated people for the red line, and all people with 3 doses for the blue line? Or is the denominator the population of Israel, the same number for all three lines? Lukas asked this question, and got the answer (the former).

Lukas_denominator

C) Since third shots are recommended for 60 year olds and over who were vaccinated at least 5 months ago, and most unvaccinated Israelis are below 60, this answer opens the possibility that the lines compare apples and oranges. Joe. S. asked about this, and received an answer (all lines display only 60 year olds and over.)

Joescholar_basepopulationquestion

Jason P. asked, and learned that the 5-month-out criterion is immaterial since 90% of the vaccinated have already reached that time point.

JasonPogue_5monthsout

D) We have even more presumptions. Like me, did you presume that the red line represents the "unvaccinated," meaning people who have not had any vaccine shots? If so, we may both be wrong about this. It has become the norm by vaccine researchers to lump "partially vaccinated" people with "unvaccinated", and call this combined group "unvaccinated". Here is an excerpt from a recent report from Public Health Ontario (link to PDF), which clearly states this unintuitive counting rule:

Ontario_case_definition

Notice that in this definition, someone who got infected within 14 days of the first shot is classified as an "unvaccinated" case and not a "partially vaccinated case".

In the following tweet, Dvir gave a hint of what he plotted:

Dvir_group_definition

In a previous analysis, he averaged the rates of people with 0 doses and 1 dose, which is equivalent to combining them and calling them unvaccinated. It's unclear to me what he did to the 1-dose subgroup in our featured chart - did it just vanish from the chart? (How people and cases are classified into these groups is a major factor in all vaccine effectiveness calculations - a topic I covered here. Unfortunately, most published reports do a poor job explaining what the analysts did).

E) Did you presume that all three lines are equally important? That's far from true. Since Israel is the world champion in vaccination, the bulk of the 60+ population form the green line. I asked Dvir and he responded that only 7.5%, or roughly 100K are unvaccinated.

DvirAran_proportionofunvaccinated

That means 1.2 million people are part of the green line, 12 times higher. There are roughly 50 cases per day among unvaccinated, and 370 daily cases among those with 2 or 3 doses. In other words, vaccinated people account for almost 90% of all cases.

Yes, this is inevitable when over 90% of the age group have been vaccinated (but it is predictable on the first day someone blasted everywhere that real-world VE is proved by the fact that almost all new cases were in the unvaccinated.)

If your job is to minimize infections, you should be spending most of your time thinking about the 370 cases among vaccinated than the 50 cases among unvaccinated. If you halve the case rate, that would be a difference of 185 cases vs 25. In Israel, the vaccination campaign has already succeeded; it's time to look forward, which is exactly why they are re-focusing on the already vaccinated.

***

If what you worry about most is the effectiveness of the original two-dose regimen, Dvir's chart raises a puzzle. Ignore the blue line, and remember that the green line already includes everybody represented by the blue line.

In the following chart, I removed the blue line, and added reference lines in dashed purple that correspond to 25%, 50% and 75% vaccine effectiveness. The data plotted on this chart are unadjusted case rates. A 75% effective vaccine cuts case rate by three quarters.

Junkcharts_dviraran_israel_threeshotschart

This chart shows the 2-dose mRNA vaccine was nowhere near 90% effective. (As regular readers know, I don't endorse this simplistic calculation and have outlined the problems here, but this style of calculation keeps getting published and passed around. Those who use it to claim real-world studies confirm prior clinical trial outcomes can either (a) insist on using it and retract their earlier conclusions, or (b) admit that such a calculation was, and is, a bad take.)

Also observe how the vaccinated (green) line is moving away from the unvaccinated (red) line. The vaccine apparently is becoming more effective, which runs counter to the trend used by the Israeli government to justify third doses. This improvement also precedes the start of the third-shot campaign. When the analytical method is bad, it generates all sorts of spurious findings.

***

As Dvir said, it is premature to comment on the third doses based on 10 days of data. For one thing, the vaccine developers insist that their vaccines must be given 14 days to work. In a typical calculation, all of the cases in the blue line fall outside the case-counting window. The effective number of cases that would be attributed to the 3-dose group right now is zero, and the vaccine effectiveness using the standard methodology is 100%, even better than shown in the chart.

There is an alternative interpretation of this graph. Statisticians call this the selection effect. On July 30, the blue line split out of the green: some people were selected to receive the 3rd dose - this includes an official selection (the government makes certain subgroups eligible) as well as a self-selection (within the eligible subgroup, certain people decide to get the 3rd shot earlier.) If those who are less exposed to the virus, or more risk averse, get the shots first, then all that is happening may be that we have split off a high VE subgroup from the green line. Even if the third shot were useless, the selection effect itself could explain the gap.

Statistics is about grays. It's not either-or. It's usually some of each. If you feel like Groundhog Day, you're getting the picture. When they rolled out two doses, we lived through an optimistic period in which most experts rejoiced about 90-100% real-world effectiveness, and then as more people get vaccinated, the effect washed away. The selection effect gradually disappears when vaccination becomes widespread. Are we starting a new cycle of hope and despair? We'll find out soon enough.


Ranking data provide context but can also confuse

This dataviz from the Economist had me spending a lot of time clicking around - which means it is a success.

Econ_usaexcept_hispanic

The graphic presents four measures of wellbeing in society - life expectancy, infant mortality rate, murder rate and prison population. The primary goal is to compare nations across those metrics. The focus is on comparing how certain nations (or subgroups) rank against each other, as indicated by the relative vertical position.

The Economist staff has a particular story to tell about racial division in the US. The dotted bars represent the U.S. average. The colored bars are the averages for Hispanic, white and black Americans. The wider the gap between the colored bars, the more variant is the experiences between American races.

The chart shows that the racial gap of life expectancy is the widest. For prison population, the U.S. and its racial subgroups occupy many of the lowest (i.e. least desirable) ranks, with the smallest gap in ranking.

***

The primary element of interactivity is hovering on a bar, which then highlights the four bars corresponding to the particular nation selected. Here is the picture for Thailand:

Econ_usaexcept_thailand

According to this view of the world, Thailand is a close cousin of the U.S. On each metric, the Thai value clings pretty near the U.S. average and sits within the range by racial groups. I'm surprised to learn that the prison population in Thailand is among the highest in the world.

Unfortunately, this chart form doesn't facilitate comparing Thailand to a country other than the U.S as one can highlight only one country at a time.

***

While the main focus of the chart is on relative comparison through ranking, the reader can extract absolute difference by reading the lengths of the bars.

This is a close-up of the bottom of the prison population metric:

Econ_useexcept_prisonpop_bottomThe length of each bar displays the numeric data. The red line is an outlier in this dataset. Black Americans suffer an incarceration rate that is almost three times the national average. Even white Americans (blue line) is imprisoned at a rate higher than most countries around the world.

As noted above, the prison population metric exhibits the smallest gap between racial subgroups. This chart is a great example of why ranking data frequently hide important information. The small gap in ranking masks the extraordinary absolute difference in incareration rates between white and black America.

The difference between rank #1 and rank #2 is enormous.

Econ_useexcept_lifeexpect_topThe opposite situation appears for life expectancy. The life expectancy values are bunched up especially at the top of the scale. The absolute difference between Hispanic and black America is 82 - 75 = 7 years, which looks small because the axis starts at zero. On a ranking scale, Hispanic is roughly in the top 15% while black America is just above the median. The relative difference is huge.

For life expectancy, ranking conveys the view that even a 7-year difference is a big deal because the countries are tightly bunched together. For prison population, ranking shows the view that a multiple fold difference is "unimportant" because a 20-0 blowout and a 10-0 blowout are both heavy defeats.

***

Whenever you transform numeric data to ranks, remember that you are artificially treating the gap between each value and the next value as a constant, even when the underlying numeric gaps show wide variance.

 

 

 

 

 


Probabilities and proportions: which one is the chart showing

The New York Times showed this chart (link):

Nyt_unvaccinated_undeterred

My first read: oh my gosh, 40-50% of the unvaccinated Americans are living their normal lives - dining at restaurants, assembling with more than 10 people, going to religious gatherings.

After reading the text around this chart, I realize I have misinterpreted it.

The chart should be read by columns. Each column is a "pie chart". For example, the first column shows that half the restaurant diners are not vaccinated, a third are fully vaccinated, and the remainder are partially vaccinated. The other columns have roughly the same proportions.

The author says "The rates of vaccination among people doing these activities largely reflect the rates in the population." This line is perhaps more confusing than intended. What she's saying is that in the general population, half of us are unvaccinated, a third are fully unvaccinated, and the remainder are partially vaccinated.

Here's a picture:

Junkcharts_redo_nyt_unvaccinatedundeterred

What this chart is saying is that the people dining out is like a random sample from all Americans. So too the other groups depicted. What Americans are choosing to do is independent of their vaccination status.

Unvaccinated people are no less likely to be doing all these activities than the fully vaccinated. This raises the question: are half of the people not wearing masks outdoors unvaccinated?

***

Why did I read the chart wrongly in the first place? It has to do with expectations.

Most survey charts plot probabilities not proportions. I haphazardly grabbed the following Pew Research chart as an example:

Pew_kids_socialmedia

From this chart, we learn that 30% of kids 9-11 years old uses TikTok compared to 11% of kids 5-8.  The percentages down a column do not sum to 100%.

 


Vaccine researchers discard the start-at-zero rule

I struggled to decide on which blog to put this post. The reality is it bridges the graphical and analytical sides of me. But I ultimately placed it on the dataviz blog because that's where today's story starts.

Data visualization has few set-in-stone rules. If pressed for one, I'd likely cite the "start-at-zero" rule, which has featured regularly on Junk Charts (here, here, and here, for example). This rule only applies to a bar chart, where the heights (and thus, areas) of the bars should encode the data.

Here is a stacked column chart that earns boos from us:

Kfung_stackedcolumn_notstartingatzero_0

I made it so I'm downvoting myself. What's wrong with this chart? The vertical axis starts at 42 instead of zero. I've cropped out exactly 42 units from each column. Therefore, the column areas are no longer proportional to the ratio of the data. Forty-two is 84% of the column A while it is 19% of column B. By shifting the x-axis, I've made column B dwarf column A. For comparison, I added a second chart that has the x-axis start at zero.

Kfung_stackedcolumn_notstartatzero

On the right side, Column B is 22 times the height of column A. On the left side, it is 4 times as high. Both are really the same chart, except one has its legs chopped off.

***

Now, let me reveal the data behind the above chart. It is a re-imagination of the famous cumulative case curve from the Pfizer vaccine trial.

Pfizerfda_figure2_cumincidencecurves

I transferred the data to a stacked column chart. Each column block shows the incremental cases observed in a given week of the trial. All the blocks stacked together rise to the total number of cases observed by the time the interim analysis was presented to the FDA.

Observe that in the cumulative cases chart, the count starts at zero on Day 0 (first dose). This means the chart corresponds to the good stacked column chart, with the x-axis starting from zero on Day 0.

Kfung_pfizercumcases_stackedcolumn

The Pfizer chart above is, however, disconnected from the oft-chanted 95% vaccine efficacy number. You can't find this number on there. Yes, everyone has been lying to you. In a previous post, I did the math, and if you trace the vaccine efficacy throughout the trial, you end up at about 80% toward the right, not 95%.

Pfizer_cumcases_ve_vsc_published

How can they conclude VE is 95% but show a chart that never reaches that level? The chart was created for a "secondary" analysis included in the report for completeness. The FDA and researchers have long ago decided, before the trials started enrolling people, that they don't care about the cumulative case curve starting on Day 0. The "primary" analysis counts cases starting 7 days after the second shot, which means Day 29.

The first week that concerns the FDA is Days 29-35 (for Pfizer's vaccine). The vaccine arm saw 41 cases in the first 28 days of the trial. In effect, the experts chop the knees off the column chart. When they talk about 95% VE, they are looking at the column chart with the axis starting at 42.

Kfung_pfizercumcases_stackedcolumn_chopped

Yes, that deserves a boo.

***

It's actually even worse than that, if you could believe it.

The most commonly cited excuse for the knee-chop is that any vaccine is expected to be useless in the first X days (X being determined after the trial ends when they analyze the data). A recently published "real world" analysis of the situation in Israel contains a lengthy defense of this tactic, in which they state:

Strictly speaking, the vaccine effectiveness based on this risk ratio overestimates the overall vaccine effectiveness in our study because it does not include the early follow-up period during which the vaccine has no detectable effect (and thus during which the ratio is 1). [Appendix, Supplement 4]

Assuming VE = 0 prior to day X is equivalent to stipulating that the number of cases found in the vaccine arm is the same (within margin of error) as the number of cases in the placebo arm during the first X days.

That assumption is refuted by the Pfizer trial (and every other trial that has results so far.)

The Pfizer/Biontech vaccine was not useless during the first week. It's not 95% efficacious, more like 16%. In the second week, it improves to 33%, and so on. (See the VE curve I plotted above for the Pfizer trial.)

What happened was all the weeks before which the VE has not plateaued were dropped.

***

So I was simplifying the picture by chopping same-size blocks from both columns in the stacked column chart. Contrary to the no-effect assumption, the blocks at the bottom of each column are of different sizes. Much more was chopped from the placebo arm than from the vaccine arm.

You'd think that would unjustifiably favor the placebo. Not true! As almost all the cases on the vaccine arm were removed, the remaining cases on the placebo arm are now many multiples of those on the vaccine arm.

The following shows what the VE would have been reported if they had started counting cases from day X. The first chart counts all cases from first shot. The second chart removes the first two weeks of cases, corresponding to the analysis that other pharmas have done, namely, evaluate efficacy from 14 days after the first dose. The third chart removes even more cases, and represents what happens if the analysis is conducted from second dose. The fourth chart is the official Pfizer analysis, which began days after the second shot. Finally, the fifth chart shows analysis begining from 14 days after the second shot, the window selected by Moderna and Astrazeneca.

Kfung_howvaccinetrialsanalyzethedata

The premise that any vaccine is completely useless for a period after administration is refuted by the actual data. By starting analysis windows at some arbitrary time, the researchers make it unnecessarily difficult to compare trials. Selecting the time of analysis based on the results of a single trial is the kind of post-hoc analysis that statisticians have long warned leads to over-estimation. It's equivalent to making the vertical axis of a column chart start above zero in order to exaggerate the relative heights of the columns.

 

P.S. [3/1/2021] See comment below. I'm not suggesting vaccines are useless. They are still a miracle of science. I believe the desire to report a 90% VE number is counterproductive. I don't understand why a 70% or 80% effective vaccine is shameful. I really don't.