Light entertainment: people of color

What colors do the "average" person like the most and the least? The following chart found here (Scott Design) tells you favorite and least favorite colors by age groups:

Color-preferences-by-age

(This is one of a series of charts. A total of 10 colors is covered by the survey. The same color can appear in both favorites and least favorites since these are aggregate proportions. Almost 40% of the respondents are under 18 and only one percent are over 70.)

Here's one item that has stumped me thus far: how are the colors ordered within each figurine?


Pulling the multi-national story out, step by step

Reader Aleksander B. found this Economist chart difficult to understand.

Redo_multinat_1

Given the chart title, the reader is looking for a story about multinationals producing lower return on equity than local firms. The first item displayed indicates that multinationals out-performed local firms in the technology sector.

The pie charts on the right column provide additional information about the share of each sector by the type of firms. Is there a correlation between the share of multinationals, and their performance differential relative to local firms?

***

We can clean up the presentation. The first changes include using dots in place of pipes, removing the vertical gridlines, and pushing the zero line to the background:

Redo_multinat_2

The horizontal gridlines attached to the zero line can also be removed:

Redo_multinat_3

Now, we re-order the rows. Start with the aggregate "All sectors". Then, order sectors from the largest under-performance by multinationals to the smallest.

Redo_multinat_4

The pie charts focus only on the share of multinationals. Taking away the remainders speeds up our perception:

Redo_multinat_5

Help the reader understand the data by dividing the sectors into groups, organized by the performance differential:

Redo_multinat_6

For what it's worth, re-sort the sectors from largest to smallest share of multinationals:

Redo_multinat_7

Having created groups of sectors by share of multinationals, I simplify further by showing the average pie chart within each group:

Redo_multinat_8

***

To recap all the edits, here is an animated gif: (if it doesn't play automatically, click on it)

Redo_junkcharts_econmultinat

***

Judging from the last graphic, I am not sure there is much correlation between share of multinationals and the performance differentials. It's interesting that in aggregate, local firms and multinationals performed the same. The average hides the variability by sector: in some sectors, local firms out-performed multinationals, as the original chart title asserted.


Too much of a good thing

Several of us discussed this data visualization over twitter last week. The dataviz by Aero Data Lab is called “A Bird’s Eye View of Pharmaceutical Research and Development”. There is a separate discussion on STAT News.

Here is the top section of the chart:

Aerodatalab_research_top

We faced a number of hurdles in understanding this chart as there is so much going on. The size of the shapes is perhaps the first thing readers notice, followed by where the shapes are located along the horizontal (time) axis. After that, readers may see the color of the shapes, and finally, the different shapes (circles, triangles,...).

It would help to have a legend explaining the sizes, shapes and colors. These were explained within the text. The size encodes the number of test subjects in the clinical trials. The color encodes pharmaceutical companies, of which the graphic focuses on 10 major ones. Circles represent completed trials, crosses inside circles represent terminated trials, triangles represent trials that are still active and recruiting, and squares for other statuses.

The vertical axis presents another challenge. It shows the disease conditions being investigated. As a lay-person, I cannot comprehend the logic of the order. With over 800 conditions, it became impossible to find a particular condition. The search function on my browser skipped over the entire graphic. I believe the order is based on some established taxonomy.

***

In creating the alternative shown below, I stayed close to the original intent of the dataviz, retaining all the dimensions of the dataset. Instead of the fancy dot plot, I used an enhanced data table. The encoding methods reflect what I’d like my readers to notice first. The color shading reflects the size of each clinical trial. The pharmaceutical companies are represented by their first initials. The status of the trial is shown by a dot, a cross or a square.

Here is a sketch of this concept showing just the top 10 rows.

Redo_aero_pharmard

Certain conditions attracted much more investment. Certain pharmas are placing bets on cures for certain conditions. For example, Novartis is heavily into research on Meningnitis, meningococcal while GSK has spent quite a bit on researching "bacterial infections."


It's hot even in Alaska

A twitter user pointed to the following chart, which shows that Alaska has experienced extreme heat this summer, with the July statewide average temperature shattering the previous record;

Alaskaheat

This column chart is clear in its primary message: the red column shows that the average temperature this year is quite a bit higher than the next highest temperature, recorded in July 2004. The error bar is useful for statistically-literate people - the uncertainty is (presumably) due to measurement errors. (If a similar error bar is drawn for the July 2004 column, these bars probably overlap a bit.)

The chart violates one of the rules of making column charts - the vertical axis is truncated at 53F, thus the heights or areas of the columns shouldn't be compared. This violation was recently nominated by two dataviz bloggers when asked about "bad charts" (see here).

Now look at the horizontal axis. These are the years of the top 20 temperature records, ordered from highest to lowest. The months are almost always July except for the year 2004 when all three summer months entered the top 20. I find it hard to make sense of these dates when they are jumping around.

In the following version, I plotted the 20 temperatures on a chronological axis. Color is used to divide the 20 data points into four groups. The chart is meant to be read top to bottom. 

Redo_junkcharts_alaska_heat

 


Putting the house in order, two Brexit polls

Reader Steve M. noticed an oversight in the Guardian in the following bar chart (link):

Guardian_Brexitpoll_1

The reporter was discussing an important story that speaks to the need for careful polling design. He was comparing two polls, one by Ipsos Mori, and one by YouGov, that estimates the vote support for each party in the future U.K. general election. The bottom line is that the YouGov poll predicts about double the support for the Brexit Party than the Ipsos-Mori poll.

The stacked bar chart should only be used for data that can be added up. Here, we should be comparing the numbers side by side:

Redo_junkcharts_brexitpoll_1

I've always found this standard display inadequate. The story here is the gap in the two bar lengths for the Brexit Party. A secondary story is that the support for the Brexit Party might come from voters breaking from Labour. In other words, we really want the reader to see:

Redo_junkcharts_brexitpoll_1b

Switching to a dot plot helps bring attention to the gaps:

Redo_junkcharts_brexitpoll_2

Now, putting the house in order:

Redo_junkcharts_brexitpoll_2b

Why do these two polls show such different results? As the reporter explained, the answer is in how the question was asked. The Ipsos-Mori is unprompted, meaning the Brexit Party was not announced to the respondent as one of the choices while the YouGov is prompted.

This last version imposes a direction on the gaps to bring out the secondary message - that the support for Brexit might be coming from voters breaking from Labour.

Redo_junkcharts_brexitpoll_2c

 

 


The Periodic Table, a challenge in information organization

Reader Chris P. points me to this article about the design of the Periodic Table. I then learned that 2019 is the “International Year of the Periodic Table,” according to the United Nations.

Here is the canonical design of the Periodic Table that science students are familiar with.

Wiki-Simple_Periodic_Table_Chart-en.svg

(Source: Wikipedia.)

The Periodic Table is an exercise of information organization and display. It's about adding structure to over 100 elements, so as to enhance comprehension and lookup. The canonical tabular design has columns and rows. The columns (Groups) impose a primary classification; the rows (Periods) provide a secondary classification. The elements also follow an aggregate order, which is traced by reading from top left to bottom right. The row structure makes clear the "periodicity" of the elements: the "period" of recurrence is not constant, tending to increase with the heavier elements at the bottom.

As with most complex datasets, these elements defy simple organization, due to a curse of dimensionality. The general goal is to put the similar elements closer together. Similarity can be defined in an infinite number of ways, such as chemical, physical or statistical properties. The canonical design, usually attributed to Russian chemist Mendeleev, attained its status because the community accepted his organizing principles, that is, his definitions of similarity (subsequently modified).

***

Of interest, there is a list of unsettled issues. According to Wikipedia, the most common arguments concern:

  • Hydrogen: typically shown as a member of Group 1 (first column), some argue that it doesn’t belong there since it is a gas not a metal. It is sometimes placed in Group 17 (halogens), where it forms a nice “triad” with fluorine and chlorine. Other designers just float hydrogen up top.
  • Helium: typically shown as a member of Group 18 (rightmost column), the  halogens noble gases, it may also be placed in Group 2.
  • Mercury: usually found in Group 12, some argue that it is not a metal like cadmium and zinc.
  • Group 3: other than the first two elements , there are various voices about how to place the other elements in Group 3. In particular, the pairs of lanthanum / actinium and lutetium / lawrencium are sometimes shown in the main table, sometimes shown in the ‘f-orbital’ sub-table usually placed below the main table.

***

Over the years, there have been numerous attempts to re-design the Periodic table. Some of these are featured in the article that Chris sent me (link).

I checked how these alternative designs deal with those unsettled issues. The short answer is they don't settle the issues.

Wide Table (Janet)

The key change is to remove the separation between the main table and the f-orbital (pink) section shown below, as a "footnote". This change clarifies the periodicity of the elements, especially the elongating periods as one moves down the table. This form is also called "long step".

Mg32190402_long_conventional

As a tradeoff, this table requires more space and has an awkward aspect ratio.

In this version of the wide table, the designer chooses to stack lutetium / lawrencium in Group 3 as part of the main table. Other versions place lanthanum / actinium in Group 3 as part of the main table. There are even versions that leave Group 3 with two elements.

Hydrogen, helium and mercury retain their conventional positions.

 

Spiral Design (Hyde)

There are many attempts at spiral designs. Here is one I found on this tumblr:

Hyde_periodictable

The spiral leverages the correspondence between periodic and circular. It is visually more pleasing than a tabular arrangement. But there is a tradeoff. Because of the increasing "diameter" from inner to outer rings, the inner elements are visually constrained compared to the outer ones.

In these spiral diagrams, the designer solves the aspect-ratio problem by creating local loops, sometimes called peninsulas. This is analogous to the footnote table solution, and visually distorts the longer periodicity of the heavier elements.

For Hyde's diagram, hydrogen is floated, helium is assigned to Group 2, and mercury stays in Group 12.

 

Racetrack

I also found this design on the same tumblr, but unattributed. It may have come from Life magazine.

Tumblr_n3tbz5rIKk1s3r80lo3_1280

It's a variant of the spiral. Instead of peninsulas, the designer squeezes the f-orbital section under Group 3, so this is analogous to the wide table solution.

The circular diagrams convey the sense of periodic return but the wide table displays the magnitudes more clearly.

This designer places hydrogen in group 18 forming a triad with fluorine and chlorine. Helium is in Group 17 and mercury in the usual Group 12 .

 

Cartogram (Sheehan)

This version is different.

Elements_relative_abundance

The designer chooses a statistical property (abundance) as the primary organizing principle. The key insight is that the lighter elements in the top few rows are generally more abundant - thus more important in a sense. The cartogram reveals a key weakness of the spiral diagrams that draw the reader's attention to the outer (heavier) elements.

Because of the distorted shapes, the cartogram form obscures much of the other data. In terms of the unsettled issues, hydrogen and helium are placed in Groups 1 and 2. Mercury is in Group 12. Group 3 is squeezed inside the main table rather than shown below.

 

Network

The centerpiece of the article Chris sent me is a network graph.

Periodic-bonds_1024

This is a complete redesign, de-emphasizing the periodicity. It's a result of radically changing the definition of similarity between elements. One barrier when introducing entirely new displays is the tendency of readers to expect the familiar.

***

I found the following articles useful when researching this post:

The Conversation

Royal Chemistry Society

 


Pay levels in the U.S.

The Wall Street Journal published a graphic showing the median pay levels at "most" public companies in the U.S. here.

Wsj_mediancompanypay

People who attended my dataviz seminar might recognize the similarity with the graphic showing internet download speeds by different broadband technologies. It's a clean, clear way of showing multiple comparisons on the same chart.

You can see the distribution of pay levels of companies within each industry grouping, and the vertical lines showing the sector medians allow comparison across sectors. The median pay levels are quite similar with the energy sector leaning higher, and consumer sector leaning lower.

The consumer sector is extremely heavy on the low side of the pay range. Companies like Universal, Abercrombie, Skechers, Mattel, Gap, etc. all pay at least half their employees less than $6,000. The data is sourced to MyLogIQ. I have no knowledge of how reliable or valid the data are. It's curious to me that Dunkin Brands showed a median of $110K while Starbucks showed $13K.

Wsj_medianpay_dunkinstarbucks

***

I like the interactive features.

The window control lets the user zoom in to different parts of the pay range. This is necessary because of the extremely high salaries. The control doubles as a presentation of the overall distribution of median salaries.

The text box can be used to add data labels to specific companies.

***

See previous discussion of WSJ Graphics.

 


Seeking simplicity in complex data: Bloomberg's dataviz on UK gender pay gap

Bloomberg featured a thought-provoking dataviz that illustrates the pay gap by gender in the U.K. The dataset underlying this effort is complex, and the designers did a good job simplifying the data for ease of comprehension.

U.K. companies are required to submit data on salaries and bonuses by gender, and by pay quartiles. The dataset is incomplete, since some companies are slow to report, and the analyst decided not to merge companies that changed names.

Companies are classified into industry groups. Readers who read Chapter 3 of Numbers Rule Your World (link) should ask whether these group differences are meaningful by themselves, without controlling for seniority, job titles, etc. The chapter features one method used by the educational testing industry to take a more nuanced analysis of group differences.

***

The Bloomberg visualization has two sections. In the top section, each company is represented by the percent difference between average female pay and average male pay. Then the companies within a given industry is shown in a histogram. The histograms provide a view of the disparity between companies within a given industry. The black line represents the relative proportion of companies in a given industry that have no gender pay gap but it’s the weight of the histogram on either side of the black line that carries the graphic’s message.

This is the histogram for arts, entertainment and recreation.

Bloomberg_genderpaygap_arts

The spread within this industry is very wide, especially on the left side of the black line. A large proportion of these companies pay women less on average than men, and how much less is highly variable. There is one extreme positive value: Chelsea FC Foundation that pays the average female about 40% more than the average male.

This is the histogram for the public sector.

Bloomberg_genderpaygap_public
It is a much tighter distribution, meaning that the pay gaps vary less from organization to organization (this statement ignores the possibility that there are outliers not visible on this graphic). Again, the vast majority of entities in this sector pay women less than men on average.

***

The second part of the visualization look at the quartile data. The employees of each company are divided into four equal-sized groups, based on their wages. Think of these groups as the Top 25% Earners, the Second 25%, etc. Within each group, the analyst looks at the proportion of women. If gender is independent of pay, then we should expect the proportions of women to be about the same for all four quartiles. (This analysis considers gender to be the only explainer for pay gaps. This is a problem I've called xyopia, that frames a complex multivariate issue as a bivariate problem involving one outcome and one explanatory variable. Chapter 3 of Numbers Rule Your World (link) discusses how statisticians approach this issue.)

Bloomberg_genderpaygap_public_pieOn the right is the chart for the public sector. This is a pie chart used as a container. Every pie has four equal-sized slices representing the four quartiles of pay.

The female proportion is encoded in both the size and color of the pie slices. The size encoding is more precise while the color encoding has only 4 levels so it provides a “binned” summary view of the same data.

For the public sector, the lighter-colored slice shows the top 25% earners, and its light color means the proportion of women in the top 25% earners group is between 30 and 50 percent. As we move clockwise around the pie, the slices represent the 2nd, 3rd and bottom 25% earners, and women form 50 to 70 percent of each of those three quartiles.

To read this chart properly, the reader must first do one calculation. Women represent about 60% of the top 25% earners in the public sector. Is that good or bad? This depends on the overall representation of women in the public sector. If the sector employs 75 percent women overall, then the 60 percent does not look good but if it employs 40 percent women, then the same value of 60% tells us that the female employees are disproportionately found in the top 25% earners.

That means the reader must compare each value in the pie chart against the overall proportion of women, which is learned from the average of the four quartiles.

***

In the chart below, I make this relative comparison explicit. The overall proportion of women in each industry is shown using an open dot. Then the graphic displays two bars, one for the Top 25% earners, and one for the Bottom 25% earners. The bars show the gap between those quartiles and the overall female proportion. For the top earners, the size of the red bars shows the degree of under-representation of women while for the bottom earners, the size of the gray bars shows the degree of over-representation of women.

Redo_junkcharts_bloombergukgendergap

The net sum of the bar lengths is a plausible measure of gender inequality.

The industries are sorted from the ones employing fewer women (at the top) to the ones employing the most women (at the bottom). An alternative is to sort by total bar lengths. In the original Bloomberg chart - the small multiples of pie charts, the industries are sorted by the proportion of women in the bottom 25% pay quartile, from smallest to largest.

In making this dataviz, I elected to ignore the middle 50%. This is not a problem since any quartile above the average must be compensated by a different quartile below the average.

***

The challenge of complex datasets is discovering simple ways to convey the underlying message. This usually requires quite a bit of upfront analytics, data transformation, and lots of sketching.

 

 


Watching a valiant effort to rescue the pie chart

Today we return to the basics. In a twitter exchange with Dean E., I found the following pie chart in an Atlantic article about who's buying San Francisco real estate:

Atlantic_sfrealestatepie

The pie chart is great at one thing, showing how workers in the software industry accounted for half of the real estate purchases. (Dean and I both want to see more details of the analysis as we have many questions about the underlying data. In this post, I ignore these questions.)

After that, if we want to learn anything else from the pie chart, we have to read the data labels. This calls for one of my key recommendations: make your charts sufficient. The principle of self-sufficiency is that the visual elements of the data graphic should by themselves say something about the data. The test of self-sufficiency is executed by removing the data printed on the chart so that one can assess how much work the visual elements are performing. If the visual elements require data labels to work, then the data graphic is effectively a lookup table.

This is the same pie chart, minus the data:

Redo_atlanticsfrealestate_sufficiency

Almost all pie charts with a large number of slices are packed with data labels. Think of the labeling as a corrective action to fix the shortcoming of the form.

Here is a bar chart showing the same data:

Junkcharts_redo_atlanticsfrealestatebar

***

Let's look at all the efforts made to overcome the lack of self-sufficiency.

Here is a zoom-in on the left side of the chart:

Redo_atlanticsfrealestate_labeling_1

Data labels are necessary to help readers perceive the sizes of the slices. But as the slices are getting smaller, the labels are getting too dense, so the guiding lines are being stretched.

Eventually, the designer gave up on labeling every slice. You can see that some slices are missing labels:

Redo_atlanticsfrealestate_labeling_3

The designer also had to give up on sequencing the slices by the data. For example, hardware with a value of 2.4% should be placed between Education and Law. It is shifted to the top left side to make the labeling easier.

Redo_atlanticsfrealestate_labeling_2

Fitting all the data labels to the slices becomes the singular task at hand.

 


Not following direction or order, the dieticians complain

At first glance, this graphic's message seems clear: what proportion of Americans are exceeding or lagging guidelines for consumption of different food groups. Blue for exceeding; orange for lagging. The stacked bars are lined up at the central divider - the point of meeting recommended volumes - to make it easy to compare relative proportions.

Figure-2-1-eatingpatterns

The original chart is here, on the Health.gov website.

The little icons illustrating the food groups are cute and unintrusive.

It's when you read further that things start to get complicated. The last three rows display a flipping of the color scheme, with orange on the right, blue on the left. Up to this point, you may understand blue to mean over the recommended value, and orange is under. Suddenly, the orange is shown on the right side.

The designer was wrestling with a structural issue in the data. The last three food groups - sugars, fats and sodium - are things to eat less. So, having long bars on the right side is not good. The orange/blue colors should be interpreted as bad/good and not as under/over.

***
The problem with this design is that it draws attention to this color flip - that is to say, it draws attention to which food groups are favored and which ones are to be avoided. This insight is actually in the metadata, not what this dataset is about.

In the following chart, I enforce the bad/good color scheme while ignoring the direction of good. The text is adjusted to use words that do not suggest direction.

Redo_foodgroups1

Dieticians are probably distressed by this chart, given that most Americans are lagging on almost all of the recommendations.

In a final edit, I re-ordered the categories.

Redo_foodgroups2