Proportions and rates: we are no dupes

Reader Lucia G. sent me this chart, from Ars Technica's FAQ about the coronavirus:

Arstechnica_covid-19-2.001-1280x960

She notices something wrong with the axis.

The designer took the advice not to make a dual axis, but didn't realize that the two metrics are not measured on the same scale even though both are expressed as percentages.

The blue bars, labeled "cases", is a distribution of cases by age group. The sum of the blue bars should be 100 percent.

The orange bars show fatality rates by age group. Each orange bar's rate is based on the number of cases in that age group. The sum of the orange bars will not add to 100 percent.

In general, the rates will have much lower values than the proportions. At least that should be the case for viruses that are not extremely fatal.

This is what the 80 and over section looks like.

Screen Shot 2020-03-12 at 1.19.46 AM

It is true that fatality rate (orange) is particularly high for the elderly while this age group accounts for less than 5 percent of total cases (blue). However, the cases that are fatal, which inhabit the orange bar, must be a subset of the total cases for 80 and over, which are shown in the blue bar. Conceptually, the orange bar should be contained inside the blue bar. So, it's counter-intuitive that the blue bar is so much shorter than the orange bar.

The following chart fixes this issue. It reveals the structure of the data, Total cases are separated by age group, then within each age group, a proportion of the cases are fatal.

Junkcharts_redo_arstechnicacovid19

This chart also shows that most patients recover in every age group. (This is only approximately true as some of the cases may not have been discharged yet.)

***

This confusion of rates and proportions reminds me of something about exit polls I just wrote about the other day on the sister blog.

When the media make statements about trends in voter turnout rate in the primary elections, e.g. when they assert that youth turnout has not increased, their evidence is from exit polls, which can measure only the distribution of voters by age group. Exit polls do not and cannot measure the turnout rate, which is the proportion of registered (or eligible) voters in the specific age group who voted.

Like the coronavirus data, the scales of these two metrics are different even though they are both percentages: the turnout rate is typically a number between 30 and 70 percent, and summing the rates across all age groups will exceed 100 percent many times over. Summing the proportions of voters across all age groups should be 100 percent, and no more.

Changes in the proportion of voters aged 18-29 and changes in the turnout rate of people aged 18-29 are not the same thing. The former is affected by the turnout of all age groups while the latter is a clean metric affected only by 18 to 29-years-old.

Basically, ignore pundits who use exit polls to comment on turnout trends. No matter how many times they repeat their nonsense, proportions and rates are not to be confused. Which means, ignore comments on turnout trends because the only data they've got come from exit polls which don't measure rates.

 

P.S. Here is some further explanation of my chart, as a response to a question from Enrico B. on Twitter.

The chart can be thought of as two distributions, one for cases (gray) and one for deaths (red). Like this:

Junkcharts_redo_arstechnicacoronavirus_2

The side-by-side version removes the direct visualization of the fatality rate within each age group. To understand fatality rate requires someone to do math in their head. Readers can qualitatively assess that for the 80 and over, they accounted for 3 percent of cases but also about 21 percent of deaths. People aged 70 to 79 however accounted for 9 percent of cases but 30 percent of deaths, etc.

What I did was to scale the distribution of deaths so that they can be compared to the cases. It's like fitting the red distribution inside the gray distribution. Within each age group, the proportion of red against the length of the bar is the fatality rate.

For every 100 cases regardless of age, 3 cases are for people aged 80 and over within which 0.5 are fatal (red).

So, the axis labels are correct. The values are proportions of total cases, although as the designer of the chart, I hope people are paying attention more to the proportion of red, as opposed to the units.

What might strike people as odd is that the biggest red bar does not appear against 80 and above. We might believe it's deadlier the older you are. That's because on an absolute scale, more people aged 70-79 died than those 80 and above. The absolute deaths is the product of the proportion of cases and the fatality rate. That's really a different story from the usual plot of fatality rates by age group. In those charts, we "control" for the prevalence of cases. If every age group were infected in the same frequency, then COVID-19 does kill more 80 and over.

 

 

 


How to read this chart about coronavirus risk

In my just-published Long Read article at DataJournalism.com, I touched upon the subject of "How to Read this Chart".

Most data graphics do not come with directions of use because dataviz designers follow certain conventions. We do not need to tell you, for example, that time runs left to right on the horizontal axis (substitute right to left for those living in right-to-left countries). It's when we deviate from the norms that calls for a "How to Read this Chart" box.

***
A discussion over Twitter during the weekend on the following New York Times chart perfectly illustrates this issue. (The article is well worth reading to educate oneself on this red-hot public-health issue. I made some comments on the sister blog about the data a few days ago.)

Nyt_coronavirus_scatter

Reading this chart, I quickly grasp that the horizontal axis is the speed of infection and the vertical axis represents the deadliness. Without being told, I used the axis labels (and some of you might notice the annotations with the arrows on the top right.) But most people will likely miss - at a glance - that the vertical axis utilizes a log scale while the horizontal axis is linear (regular).

The effect of a log scale is to pull the large numbers toward the average while spreading the smaller numbers apart - when compared to a linear scale. So when we look at the top of the coronavirus box, it appears that this virus could be as deadly as SARS.

The height of the pink box is 3.9, while the gap between the top edge of the box and the SARS dot is 6. Yet our eyes tell us the top edge is closer to the SARS dot than it is to the bottom edge!

There is nothing inaccurate about this chart - the log scale introduces such distortion. The designer has to make a choice.

Indeed, there were two camps on Twitter, arguing for and against the log scale.

***

I use log scales a lot in analyzing data, but tend not to use log scales in a graph. It's almost a given that using the log scale requires a "How to Read this Chart" message. And the NY Times crew delivers!

Right below the chart is a paragraph:

Nyt_coronavirus_howtoreadthis

To make this even more interesting, the horizontal axis is a hidden "log" scale. That's because infections spread exponentially. Even though the scale is not labeled "log", think as if the large values have been pulled toward the middle.

Here is an over-simplified way to see this. A disease that spreads at a rate of fifteen people at a time is not 3 times worse than one that spreads five at a time. In the former case, the first sick person transmits it to 15, and then each of the 15 transmits the flu to 15 others, thus after two steps, 241 people have been infected (225 + 15 + 1). In latter case, it's 5x5 + 5 + 1 = 31 infections after two steps. So at this point, the number of infected is already 8 times worse, not 3 times. And the gap keeps widening with each step.

P.S. See also my post on the sister blog that digs deeper into the metrics.

 


How to read this cost-benefit chart, and why it is so confusing

Long-time reader Antonio R. found today's chart hard to follow, and he isn't alone. It took two of us multiple emails and some Web searching before we think we "got it".

Ar_submit_Fig-3-2-The-policy-cost-curve-525

 

Antonio first encountered the chart in a book review (link) of Hal Harvey et. al, Designing Climate Solutions. It addresses the general topic of costs and benefits of various programs to abate CO2 emissions. The reviewer praised the "wealth of graphics [in the book] which present complex information in visually effective formats." He presented the above chart as evidence, and described its function as:

policy-makers can focus on the areas which make the most difference in emissions, while also being mindful of the cost issues that can be so important in getting political buy-in.

(This description is much more informative than the original chart title, which states "The policy cost curve shows the cost-effectiveness and emission reduction potential of different policies.")

Spend a little time with the chart now before you read the discussion below.

Warning: this is a long read but well worth it.

 

***

 

If your experience is anything like ours, scraps of information flew at you from different parts of the chart, and you had a hard time piecing together a story.

What are the reasons why this data graphic is so confusing?

Everyone recognizes that this is a column chart. For a column chart, we interpret the heights of the columns so we look first at the vertical axis. The axis title informs us that the height represents "cost effectiveness" measured in dollars per million metric tons of CO2. In a cost-benefit sense, that appears to mean the cost to society of obtaining the benefit of reducing CO2 by a given amount.

That's how far I went before hitting the first roadblock.

For environmental policies, opponents frequently object to the high price of implementation. For example, we can't have higher fuel efficiency in cars because it would raise the price of gasoline too much. Asking about cost-effectiveness makes sense: a cost-benefit trade-off analysis encapsulates the something-for-something principle. What doesn't follow is that the vertical scale sinks far into the negative. The chart depicts the majority of the emissions abatement programs as having negative cost effectiveness.

What does it mean to be negatively cost-effective? Does it mean society saves money (makes a profit) while also reducing CO2 emissions? Wouldn't those policies - more than half of the programs shown - be slam dunks? Who can object to programs that improve the environment at no cost?

I tabled that thought, and proceeded to the horizontal axis.

I noticed that this isn't a standard column chart, in which the width of the columns is fixed and uneventful. Here, the widths of the columns are varying.

***

In the meantime, my eyes are distracted by the constellation of text labels. The viewing area of this column chart is occupied - at least 50% - by text. These labels tell me that each column represents a program to reduce CO2 emissions.

The dominance of text labels is a feature of this design. For a conventional column chart, the labels are situated below each column. Since the width does not usually carry any data, we tend to keep the columns narrow - Tufte, ever the minimalist, has even advocated reducing columns to vertical lines. That leaves insufficient room for long labels. Have you noticed that government programs hold long titles? It's tough to capture even the outline of a program with fewer than three big words, e.g. "Renewable Portfolio Standard" (what?).

The design solution here is to let the column labels run horizontally. So the graphical element for each program is a vertical column coupled with a horizontal label that invades the territories of the next few programs. Like this:

Redo_fueleconomystandardscars

The horror of this design constraint is fully realized in the following chart, a similar design produced for the state of Oregon (lifted from the Plan Washington webpage listed as a resource below):

Figure 2 oregon greenhouse

In a re-design, horizontal labeling should be a priority.

 

***

Realizing that I've been distracted by the text labels, back to the horizontal axis I went.

This is where I encountered the next roadblock.

The axis title says "Average Annual Emissions Abatement" measured in millions metric tons. The unit matches the second part of the vertical scale, which is comforting. But how does one reconcile the widths of columns with a continuous scale? I was expecting each program to have a projected annual abatement benefit, and those would fall as dots on a line, like this:

Redo_abatement_benefit_dotplot

Instead, we have line segments sitting on a line, like this:

Redo_abatement_benefit_bars_end2end_annuallabel

Think of these bars as the bottom edges of the columns. These line segments can be better compared to each other if structured as a bar chart:

Redo_abatement_benefit_bars

Instead, the design arranges these lines end-to-end.

To unravel this mystery, we go back to the objective of the chart, as announced by the book reviewer. Here it is again:

policy-makers can focus on the areas which make the most difference in emissions, while also being mindful of the cost issues that can be so important in getting political buy-in.

The primary goal of the chart is a decision-making tool for policy-makers who are evaluating programs. Each program has a cost and also a benefit. The cost is shown on the vertical axis and the benefit is shown on the horizontal. The decision-maker will select some subset of these programs based on the cost-benefit analysis. That subset of programs will have a projected total expected benefit (CO2 abatement) and a projected total cost.

By stacking the line segments end to end on top of the horizontal axis, the chart designer elevates the task of computing the total benefits of a subset of programs, relative to the task of learning the benefits of any individual program. Thus, the horizontal axis is better labeled "Cumulative annual emissions abatement".

 

Look at that axis again. Imagine you are required to learn the specific benefit of program titled "Fuel Economy Standards: Cars & SUVs".  

Redo_abatement_benefit_bars_end2end_cumlabel

This is impossible to do without pulling out a ruler and a calculator. What the axis labels do tell us is that if all the programs to the left of Fuel Economy Standards: Cars & SUVs were adopted, the cumulative benefits would be 285 million metric tons of CO2 per year. And if Fuel Economy Standards: Cars & SUVs were also implemented, the cumulative benefits would rise to 375 million metric tons.

***

At long last, we have arrived at a reasonable interpretation of the cost-benefit chart.

Policy-makers are considering throwing their support behind specific programs aimed at abating CO2 emissions. Different organizations have come up with different ways to achieve this goal. This goal may even have specific benchmarks; the government may have committed to an international agreement, for example, to reduce emissions by some set amount by 2030. Each candidate abatement program is evaluated on both cost and benefit dimensions. Benefit is given by the amount of CO2 abated. Cost is measured as a "marginal cost," the amount of dollars required to achieve each million metric ton of abatement.

This "marginal abatement cost curve" aids the decision-making. It lines up the programs from the most cost-effective to the least cost-effective. The decision-maker is presumed to prefer a more cost-effective program than a less cost-effective program. The chart answers the following question: for any given subset of programs (so long as we select them left to right contiguously), we can read off the cumulative amount of CO2 abated.

***

There are still more limitations of the chart design.

  • We can't directly read off the cumulative cost of the selected subset of programs because the vertical axis is not cumulative. The cumulative cost turns out to be the total area of all the columns that correspond to the selected programs. (Area is height x width, which is cost per benefit multiplied by benefit, which leaves us with the cost.) Unfortunately, it takes rulers and calculators to compute this total area.

  • We have presumed that policy-makers will make the Go-No-go decision based on cost effectiveness alone. This point of view has already been contradicted. Remember the mystery around negatively cost-effective programs - their existence shows that some programs are stalled even when they reduce emissions in addition to making money!

  • Since many, if not most, programs have negative cost-effectiveness (by the way they measured it), I'd flip the metric over and call it profitability (or return on investment). Doing so removes another barrier to our understanding. With the current cost-effectiveness metric, policy-makers are selecting the "negative" programs before the "positive" programs. It makes more sense to select the "positive" programs before the "negative" ones!

***

In a Trifecta Checkup (guide), I rate this chart Type V. The chart has a great purpose, and the design reveals a keen sense of the decision-making process. It's not a data dump for sure. In addition, an impressive amount of data gathering and analysis - and synthesis - went into preparing the two data series required to construct the chart. (Sure, for something so subjective and speculative, the analysis methodology will inevitably be challenged by wonks.) Those two data series are reasonable measures for the stated purpose of the chart.

The chart form, though, has various shortcomings, as shown here.  

***

In our email exchange, Antonio and I found the Plan Washington website useful. This is where we learned that this chart is called the marginal abatement cost curve.

Also, the consulting firm McKinsey is responsible for popularizing this chart form. They have published this long report that explains even more of the analysis behind constructing this chart, for those who want further details.


Light entertainment: people of color

What colors do the "average" person like the most and the least? The following chart found here (Scott Design) tells you favorite and least favorite colors by age groups:

Color-preferences-by-age

(This is one of a series of charts. A total of 10 colors is covered by the survey. The same color can appear in both favorites and least favorites since these are aggregate proportions. Almost 40% of the respondents are under 18 and only one percent are over 70.)

Here's one item that has stumped me thus far: how are the colors ordered within each figurine?


Women workers taken for a loop or four

I was drawn to the following chart in Business Insider because of the calendar metaphor. (The accompanying article is here.)

Businessinsider_payday

Sometimes, the calendar helps readers grasp concepts faster but I'm afraid the usage here slows us down.

The underlying data consist of just four numbers: the wage gaps between race and gender in the U.S., considered simply from an aggregate median personal income perspective. The analyst adopts the median annual salary of a white male worker as a baseline. Then, s/he imputes the number of extra days that others must work to attain the same level of income. For example, the median Asian female worker must work 64 extra days (at her daily salary level) to match the white guy's annual pay. Meanwhile, Hispanic female workers must work 324 days extra.

There are a host of reasons why the calendar metaphor backfired.

Firstly, it draws attention to an uncomfortable detail of the analysis - which papers over the fact that weekends or public holidays are counted as workdays. The coloring of the boxes compounds this issue. (And the designer also got confused and slipped up when applying the purple color for Hispanic women.)

Secondly, the calendar focuses on Year 2 while Year 1 lurks in the background - white men have to work to get that income (roughly $46,000 in 2017 according to the Census Bureau).

Thirdly, the calendar view exposes another sore point around the underlying analysis. In reality, the white male workers are continuing to earn wages during Year 2.

The realism of the calendar clashes with the hypothetical nature of the analysis.

***

One can just use a bar chart, comparing the number of extra days needed. The calendar design can be considered a set of overlapping bars, wrapped around the shape of a calendar.

The staid bars do not bring to life the extra toil - the message is that these women have to work harder to get the same amount of pay. This led me to a different metaphor - the white men got to the destination in a straight line but the women must go around loops (extra days) before reaching the same endpoint.

Redo_businessinsider_racegenderpaygap

While the above is a rough sketch, I made sure that the total length of the lines including the loops roughly matches the total number of days the women needed to work to earn $46,000.

***

The above discussion focuses solely on the V(isual) corner of the Trifecta Checkup, but this data visualization is also interesting from the D(ata) perspective. Statisticians won't like such a simple analysis that ignores, among other things, the different mix of jobs and industries underlying these aggregate pay figures.

Now go to my other post on the sister (book) blog for a discussion of the underlying analysis.

 

 


Where are the Democratic donors?

I like Alberto's discussion of the attractive maps about donors to Democratic presidential candidates, produced by the New York Times (direct link).

Here is the headline map:

Nyt_demdonormaps

The message is clear: Bernie Sanders is the only candidate with nation-wide appeal. The breadth of his coverage is breath-taking. (I agree with Alberto's critique about the lack of a color scale. It's impossible to know if the counts are trivial or not.)

Bernie's coverage is so broad that his numbers overwhelm those of all other candidates except in their home bases (e.g. O'Rourke in Texas).

A remedy to this is to look at the data after removing Bernie's numbers.

Nyt_demdonormap_2

 

This pair of maps reminds me of the Sri Lanka religions map that I revisualized in this post.

Redo_srilankareligiondistricts_v2

The first two maps divide the districts into those in which one religion dominates and those in which multiple religions share the limelight. The third map then shows the second-rank religion in the mixed-religions districts.

The second map in the NYT's donor map series plots the second-rank candidate in all the precincts that Bernie Sanders lead. It's like the designer pulled off the top layer (blue: Bernie) to reveal what's underneath.

Because all of Bernie's data are removed, O'Rourke is still dominating Texas, Buttigieg in Indiana, etc. An alternative is to pull off the top layer in those pockets as well. Then, it's likely to see Bernie showing up in those areas.

The other startling observation is how small Joe Biden's presence is on these maps. This is likely because Biden relies primarily on big donors.

See here for the entire series of donor maps. See here for past discussion of New York Times's graphics.


SCMP's fantastic infographic on Hong Kong protests

In the past month, there have been several large-scale protests in Hong Kong. The largest one featured up to two million residents taking to the streets on June 16 to oppose an extradition act that was working its way through the legislature. If the count was accurate, about 25 percent of the city’s population joined in the protest. Another large demonstration occurred on July 1, the anniversary of Hong Kong’s return to Chinese rule.

South China Morning Post, which can be considered the New York Times of Hong Kong, is well known for its award-winning infographics, and they rose to the occasion with this effort.

This is one of the rare infographics that you’d not regret spending time reading. After reading it, you have learned a few new things about protesting in Hong Kong.

In particular, you’ll learn that the recent demonstrations are part of a larger pattern in which Hong Kong residents express their dissatisfaction with the city’s governing class, frequently accused of acting as puppets of the Chinese state. Under the “one country, two systems” arrangement, the city’s officials occupy an unenviable position of mediating the various contradictions of the two systems.

This bar chart shows the growth in the protest movement. The recent massive protests didn't come out of nowhere. 

Scmp_protestsovertime

This line chart offers a possible explanation for burgeoning protests. Residents’ perceived their freedoms eroding in the last decade.

Scmp_freedomsurvey

If you have seen videos of the protests, you’ll have noticed the peculiar protest costumes. Umbrellas are used to block pepper sprays, for example. The following lovely graphic shows how the costumes have evolved:

Scmp_protestcostume

The scale of these protests captures the imagination. The last part in the infographic places the number of protestors in context, by expressing it in terms of football pitches (as soccer fields are known outside the U.S.) This is a sort of universal measure due to the popularity of football almost everywhere. (Nevertheless, according to Wikipedia, the fields do not have one fixed dimension even though fields used for international matches are standardized to 105 m by 68 m.)

Scmp_protestscale_pitches

This chart could be presented as a bar chart. It’s just that the data have been re-scaled – from counting individuals to counting football pitches-ful of individuals. 

***
Here is the entire infographics.


An exercise in decluttering

My friend Xan found the following chart by Pew hard to understand. Why is the chart so taxing to look at? 

Pew_collegeadmissions

It's packing too much.

I first notice the shaded areas. Shading usually signifies "look here". On this chart, the shading is highlighting the least important part of the data. Since the top line shows applicants and the bottom line admitted students, the shaded gap displays the rejections.

The numbers printed on the chart are growth rates but they confusingly do not sync with the slopes of the lines because the vertical axis plots absolute numbers, not rates. 

Pew_collegeadmissions_growthThe vertical axis presents the total number of applicants, and the total number of admitted students, in each "bucket" of colleges, grouped by their admission rate in 2017. On the right, I drew in two lines, both growth rates of 100%, from 500K to 1 million, and from 1 to 2 million. The slopes are not the same even though the rates of growth are.

Therefore, the growth rates printed on the chart must be read as extraneous data unrelated to other parts of the chart. Attempts to connect those rates to the slopes of the corresponding lines are frustrated.

Another lurking factor is the unequal sizes of the buckets of colleges. There are fewer than 10 colleges in the most selective bucket, and over 300 colleges in the largest bucket. We are unable to interpret properly the total number of applicants (or admissions). The quantity of applications in a bucket depends not just on the popularity of the colleges but also the number of colleges in each bucket.

The solution isn't to resize the buckets but to select a more appropriate metric: the number of applicants per enrolled student. The most selective colleges are attracting about 20 applicants per enrolled student while the least selective colleges (those that accept almost everyone) are getting 4 applicants per enrolled student, in 2017.

As the following chart shows, the number of applicants has doubled across the board in 15 years. This raises an intriguing question: why would a college that accepts pretty much all applicants need more applicants than enrolled students?

Redo_pewcollegeadmissions

Depending on whether you are a school administrator or a student, a virtuous (or vicious) cycle has been realized. For the top four most selective groups of colleges, they have been able to progressively attract more applicants. Since class size did not expand appreciably, more applicants result in ever-lower admit rate. Lower admit rate reduces the chance of getting admitted, which causes prospective students to apply to even more colleges, which further suppresses admit rate. 

 

 

 


Pretty circular things

National Geographic features this graphic illustrating migration into the U.S. from the 1850s to the present.

Natgeo_migrationtreerings

 

What to Like

It's definitely eye-catching, and some readers will be enticed to spend time figuring out how to read this chart.

The inset reveals that the chart is made up of little colored strips that mix together. This produces a pleasing effect of gradual color gradation.

The white rings that separate decades are crucial. Without those rings, the chart becomes one long run-on sentence.

Once the reader invests time in learning how to read the chart, the reader will grasp the big picture. One learns, for example, that migrants from the most recent decades have come primarily from Latin America (orange) or Asia (pink). Migrants from Europe (green) and Canada (blue) came in waves but have been muted in the last few decades.

 

What's baffling

Initially, the chart is disorienting. It's not obvious whether the compass directions mean anything. We can immediately understand that the further out we go, the larger numbers of migrants. But what about which direction?

The key appears in the legend - which should be moved from bottom right to top left as it's so important. Apparently, continent/country of origin is coded in the directions.

This region-to-color coding seems to be rough-edged by design. The color mixing discussed above provides a nice artistic effect. Here, the reader finds out that mixing is primarily between two neighboring colors, thus two regions placed side by side on the chart. Thus, because Europe (green) and Asia (pink) are on opposite sides of the rings, those two colors do not mix.

Another notable feature of the chart is the lack of any data other than the decade labels. We won't learn how many migrants arrived in any decade, or the extent of migration as it impacts population size.

A couple of other comments on the circular design.

The circles expand in size for sure as time moves from inside out. Thus, this design only works well for "monotonic" data, that is to say, migration always increases as time passes.

The appearance of the chart is only mildly affected by the underlying data. Swapping the regions of origin changes the appearance of this design drastically.

 

 

 

 

 


Check out the Lifespan of News project

Alberto Cairo introduces another one of his collaborations with Google, visualizing Google search data. We previously looked at other projects here.

The latest project, designed by Schema, Axios, and Google News Initiative, tracks the trending of popular news stories over time and space, and it's a great example of making sense of a huge pile of data.

The design team produced a sequence of graphics to illustrate the data. The top news stories are grouped by category, such as Politics & Elections, Violence & War, and Environment & Science, each given a distinct color maintained throughout the project.

The first chart is an area chart that looks at individual stories, and tracks the volume over time.

Lifespannews_areachart

To read this chart, you have to notice that the vertical axis measuring volume is a log scale, meaning that each tick mark up represents a 10-fold increase. Log scale is frequently used to draw far-away data closer to the middle, making it possible to see both ends of a wide distribution on the same chart. The log transformation introduces distortion deliberately. The smaller data look disproportionately large because of it.

The time scrolls automatically so that you feel a rise and fall of various news stories. It's a great way to experience the news cycle in the past year. The overlapping areas show competing news stories that shared the limelight at that point in time.

Just bear in mind that you have to mentally reverse the distortion introduced by the log scale.

***

In the second part of the project, they tackle regional patterns. Now you see a map with proportional symbols. The top story in each locality is highlighted with the color of the topic. As time flows by, the sizes of the bubbles expand and contract.

Lifespannews_bubblemap

Sometimes, the entire nation was consumed by the same story, e.g. certain obituaries. At other times, people in different regions focused on different topics.

***

In the last part of the project, they describe general shapes of the popularity curves. Most stories have one peak although certain stories like U.S. government shutdown will have multiple peaks. There is also variation in terms of how fast a story rises to the peak and how quickly it fades away.

The most interesting aspect of the project can be learned from the footnote. The data are not direct hits to the Google News stories but searches on Google. For each story, one (or more) unique search terms are matched, and only those stories are counted. A "control" is established, which is an excellent idea. The control gives meaning to those counts. The control used here is the number of searches for the generic term "Google News." Presumably this is a relatively stable number that is a proxy for general search activity. Thus, the "volume" metric is really a relative measure against this control.