Where are the Democratic donors?

I like Alberto's discussion of the attractive maps about donors to Democratic presidential candidates, produced by the New York Times (direct link).

Here is the headline map:

Nyt_demdonormaps

The message is clear: Bernie Sanders is the only candidate with nation-wide appeal. The breadth of his coverage is breath-taking. (I agree with Alberto's critique about the lack of a color scale. It's impossible to know if the counts are trivial or not.)

Bernie's coverage is so broad that his numbers overwhelm those of all other candidates except in their home bases (e.g. O'Rourke in Texas).

A remedy to this is to look at the data after removing Bernie's numbers.

Nyt_demdonormap_2

 

This pair of maps reminds me of the Sri Lanka religions map that I revisualized in this post.

Redo_srilankareligiondistricts_v2

The first two maps divide the districts into those in which one religion dominates and those in which multiple religions share the limelight. The third map then shows the second-rank religion in the mixed-religions districts.

The second map in the NYT's donor map series plots the second-rank candidate in all the precincts that Bernie Sanders lead. It's like the designer pulled off the top layer (blue: Bernie) to reveal what's underneath.

Because all of Bernie's data are removed, O'Rourke is still dominating Texas, Buttigieg in Indiana, etc. An alternative is to pull off the top layer in those pockets as well. Then, it's likely to see Bernie showing up in those areas.

The other startling observation is how small Joe Biden's presence is on these maps. This is likely because Biden relies primarily on big donors.

See here for the entire series of donor maps. See here for past discussion of New York Times's graphics.


What is a bad chart?

In the recent issue of Madolyn Smith’s Conversations with Data newsletter hosted by DataJournalism.com, she discusses “bad charts,” featuring submissions from several dataviz bloggers, including myself.

What is a “bad chart”? Based on this collection of curated "bad charts", it is not easy to nail down “bad-ness”. The common theme is the mismatch between the message intended by the designer and the message received by the reader, a classic error of communication. How such mismatch arises depends on the specific example. I am able to divide the “bad charts” into two groups: charts that are misinterpreted, and charts that are misleading.

 

Charts that are misinterpreted

The Causes of Death entry, submitted by Alberto Cairo, is a “well-designed” chart that requires “reading the story where it is inserted and the numerous caveats.” So readers may misinterpret the chart if they do not also partake the story at Our World in Data which runs over 1,500 words not including the appendix.

Ourworldindata_causesofdeath

The map of Canada, submitted by Highsoft, highlights in green the provinces where the majority of residents are members of the First Nations. The “bad” is that readers may incorrectly “infer that a sizable part of the Canadian population is First Nations.”

Highsoft_CanadaFirstNations

In these two examples, the graphic is considered adequate and yet the reader fails to glean the message intended by the designer.

 

Charts that are misleading

Two fellow bloggers, Cole Knaflic and Jon Schwabish, offer the advice to start bars at zero (here's my take on this rule). The “bad” is the distortion introduced when encoding the data into the visual elements.

The Color-blindness pictogram, submitted by Severino Ribecca, commits a similar faux pas. To compare the rates among men and women, the pictograms should use the same baseline.

Colourblindness_pictogram

In these examples, readers who correctly read the charts nonetheless leave with the wrong message. (We assume the designer does not intend to distort the data.) The readers misinterpret the data without misinterpreting the graphics.

 

Using the Trifecta Checkup

In the Trifecta Checkup framework, these problems are second-level problems, represented by the green arrows linking up the three corners. (Click here to learn more about using the Trifecta Checkup.)

Trifectacheckup_img

The visual design of the Causes of Death chart is not under question, and the intended message of the author is clearly articulated in the text. Our concern is that the reader must go outside the graphic to learn the full message. This suggests a problem related to the syncing between the visual design and the message (the QV edge).

By contrast, in the Color Blindness graphic, the data are not under question, nor is the use of pictograms. Our concern is how the data got turned into figurines. This suggests a problem related to the syncing between the data and the visual (the DV edge).

***

When you complain about a misleading chart, or a chart being misinterpreted, what do you really mean? Is it a visual design problem? a data problem? Or is it a syncing problem between two components?


SCMP's fantastic infographic on Hong Kong protests

In the past month, there have been several large-scale protests in Hong Kong. The largest one featured up to two million residents taking to the streets on June 16 to oppose an extradition act that was working its way through the legislature. If the count was accurate, about 25 percent of the city’s population joined in the protest. Another large demonstration occurred on July 1, the anniversary of Hong Kong’s return to Chinese rule.

South China Morning Post, which can be considered the New York Times of Hong Kong, is well known for its award-winning infographics, and they rose to the occasion with this effort.

This is one of the rare infographics that you’d not regret spending time reading. After reading it, you have learned a few new things about protesting in Hong Kong.

In particular, you’ll learn that the recent demonstrations are part of a larger pattern in which Hong Kong residents express their dissatisfaction with the city’s governing class, frequently accused of acting as puppets of the Chinese state. Under the “one country, two systems” arrangement, the city’s officials occupy an unenviable position of mediating the various contradictions of the two systems.

This bar chart shows the growth in the protest movement. The recent massive protests didn't come out of nowhere. 

Scmp_protestsovertime

This line chart offers a possible explanation for burgeoning protests. Residents’ perceived their freedoms eroding in the last decade.

Scmp_freedomsurvey

If you have seen videos of the protests, you’ll have noticed the peculiar protest costumes. Umbrellas are used to block pepper sprays, for example. The following lovely graphic shows how the costumes have evolved:

Scmp_protestcostume

The scale of these protests captures the imagination. The last part in the infographic places the number of protestors in context, by expressing it in terms of football pitches (as soccer fields are known outside the U.S.) This is a sort of universal measure due to the popularity of football almost everywhere. (Nevertheless, according to Wikipedia, the fields do not have one fixed dimension even though fields used for international matches are standardized to 105 m by 68 m.)

Scmp_protestscale_pitches

This chart could be presented as a bar chart. It’s just that the data have been re-scaled – from counting individuals to counting football pitches-ful of individuals. 

***
Here is the entire infographics.


Three estimates, two differences trip up an otherwise good design

Reader Fernando P. was baffled by this chart from the Perception Gap report by More in Common. (link to report)

Moreincommon_perceptiongap_republicans

Overall, this chart is quite good. Its flaws are subtle. There is so much going on, perhaps even the designer found it hard to keep level.

The title is "Democrat's Perception Gap" which actually means the gap between Democrats' perception of Republicans and Republican's self-reported views. We are talking about two estimates of Republican views. Conversely, in Figure 2 (not shown), the "Republican's Perception Gap" describes two estimates of Democrat views.

The gap is visually shown as the gray bar between the red dot and the blue dot. This is labeled perception gap, and its values are printed on the right column, also labeled perception gap.

Perhaps as an after-thought, the designer added the yellow stripes, which is a third estimate of Republican views, this time by Independents. This little addition wreaks havoc. There are now three estimates - and two gaps. There is a new gap, between Independents' perception of Republican views, and Republican's self-reported views. This I-gap is hidden in plain sight. The words "perception gap" obstinately sticks to the D-gap.

***

Here is a slightly modified version of the same chart.

Redo_perceptiongap_republicans

 

The design focuses attention on the two gaps (bars). It also identifies the Republican self-perception as the anchor point from which the gaps are computed.

I have chosen to describe the Republican dot as "self-perception" rather than "actual view," which connotes a form of "truth." Rather than considering the gap as an error of estimation, I like to think of the gap as the difference between two groups of people asked to estimate a common quantity.

Also, one should note that on the last two issues, there is virtual agreement.

***

Aside from the visual, I have doubts about the value of such a study. Only the most divisive issues are being addressed here. Adding a few bipartisan issues would provide controls that can be useful to tease out what is the baseline perception gap.

I wonder whether there is a self-selection in survey response, such that people with extreme views (from each party) will be under-represented. Further, do we believe that all survey respondents will provide truthful answers to sensitive questions that deal with racism, sexism, etc.? For example, if I am a moderate holding racist views, would I really admit to racism in a survey?

 

 


Putting the house in order, two Brexit polls

Reader Steve M. noticed an oversight in the Guardian in the following bar chart (link):

Guardian_Brexitpoll_1

The reporter was discussing an important story that speaks to the need for careful polling design. He was comparing two polls, one by Ipsos Mori, and one by YouGov, that estimates the vote support for each party in the future U.K. general election. The bottom line is that the YouGov poll predicts about double the support for the Brexit Party than the Ipsos-Mori poll.

The stacked bar chart should only be used for data that can be added up. Here, we should be comparing the numbers side by side:

Redo_junkcharts_brexitpoll_1

I've always found this standard display inadequate. The story here is the gap in the two bar lengths for the Brexit Party. A secondary story is that the support for the Brexit Party might come from voters breaking from Labour. In other words, we really want the reader to see:

Redo_junkcharts_brexitpoll_1b

Switching to a dot plot helps bring attention to the gaps:

Redo_junkcharts_brexitpoll_2

Now, putting the house in order:

Redo_junkcharts_brexitpoll_2b

Why do these two polls show such different results? As the reporter explained, the answer is in how the question was asked. The Ipsos-Mori is unprompted, meaning the Brexit Party was not announced to the respondent as one of the choices while the YouGov is prompted.

This last version imposes a direction on the gaps to bring out the secondary message - that the support for Brexit might be coming from voters breaking from Labour.

Redo_junkcharts_brexitpoll_2c

 

 


Elegant way to present a pair of charts

The Bloomberg team has come up with a few goodies lately. I was captivated by the following graphic about the ebb and flow of U.S. presidential candidates across recent campaigns. Link to the full presentation here.

The highlight is at the bottom of the page. This is an excerpt of the chart:

Bloomberg_presidentialcandidates_1

From top to bottom are the sequential presidential races. The far right vertical axis is the finish line. Going right to left is the time before the finish line. In 2008, for example, there are candidates who entered the race much earlier than typical.

This chart presents an aggregate view of the data. We get a sense of when most of the candidates enter the race, when most of them are knocked out, and also a glimpse of outliers. The general pattern across multiple elections is also clear. The design is a stacked area chart with the baseline in the middle, rather than the bottom, of the chart.

Sure, the chart can disappoint those readers who want details and precise numbers. It's not immediately apparent how many candidates were in the race at the height of 2008, nor who the candidates were.

The designer added a nice touch. By clicking on any of the stacks, it transforms into a bar chart, showing the extent of each candidate's participation in the race.

Bloomberg_presidentialcandidates_2

I wish this was a way to collapse the bar chart back to the stack. You can reload the page to start afresh.

***

This elegant design touch makes the user experience playful. It's also an elegant way to present what is essentially a panel of plots. Imagine the more traditional presentation of placing the stack and the bar chart side by side.

This design does not escape the trade-off between entertainment value and data integrity. Looking at the 2004 campaign, one should expect to see the blue stack halve in size around day 100 when Kerry became the last man standing. That moment is not marked in the stack. The stack can be interpreted as a smoothed version of the count of active candidates.

Redo_bloombergpresidentialcandidates_3

I suppose some may complain the stack misrepresents the data somewhat. I find it an attractive way of presenting the big-picture message to an audience that mostly spend less than a minute looking at the graphic.


Morphing small multiples to investigate Sri Lanka's religions

Earlier this month, the bombs in Sri Lanka led to some data graphics in the media, educating us on the religious tensions within the island nation. I like this effort by Reuters using small multiples to show which religions are represented in which districts of Sri Lanka (lifted from their twitter feed):

Reuters_srilanka_religiondistricts

The key to reading this map is the top legend. From there, you'll notice that many of the color blocks, especially for Muslims and Catholics are well short of 50 percent. The absence of the darkest tints of green and blue conveys important information. Looking at the blue map by itself misleads - Catholics are in the minority in every district except one. In this setup, readers are expected to compare between maps, and between map and legend.

The overall distribution at the bottom of the chart is a nice piece of context.

***

The above design isolates each religion in its own chart, and displays the spatial spheres of influence. I played around with using different ways of paneling the small multiples.

In the following graphic, the panels represent the level of dominance within each district. The first panel shows the districts in which the top religion is practiced by at least 70 percent of the population (if religions were evenly distributed across all districts, we expect 70 percent of each to be Buddhists.) The second panel shows the religions that account for 40 to 70 percent of the district's residents. By this definition, no district can appear on both the left and middle maps. This division is effective at showing districts with one dominant religion, and those that are "mixed".

In the middle panel, the displayed religion represents the top religion in a mixed district. The last panel shows the second religion in each mixed district, and these religions typically take up between 25 and 40 percent of the residents.

Redo_srilankareligiondistricts_v2

The chart shows that other than Buddhists, Hinduism is the only religion that dominates specific districts, concentrated at the northern end of the island. The districts along the east and west coasts and the "neck" are mixed with the top religion accounting for 40 to 70 percent of the residents. By assimilating the second and the third panels, the reader sees the top and the second religions in each of these mixed districts.

***

This example shows why in the Trifecta Checkup, the Visual is a separate corner from the Question and the Data. Both maps utilize the same visual design, in terms of forms and colors and so on, but they deliver different expereinces to readers by answering different questions, and cutting the data differently.

 

P.S. [5/7/2019] Corrected spelling of Hindu.


Say it thrice: a nice example of layering and story-telling

I enjoyed the New York Times's data viz showing how actively the Democratic candidates were criss-crossing the nation in the month of March (link).

It is a great example of layering the presentation, starting with an eye-catching map at the most aggregate level. The designers looped through the same dataset three times.

Nyt_candidatemap_1

This compact display packs quite a lot. We can easily identify which were the most popular states; and which candidate visited which states the most.

I noticed how they handled the legend. There is no explicit legend. The candidate names are spread around the map. The size legend is also missing, replaced by a short sentence explaining that size encodes the number of cities visited within the state. For a chart like this, having a precise size legend isn't that useful.

The next section presents the same data in a small-multiples layout. The heads are replaced by dots.

Nyt_candidatemap_2

This allows more precise comparison of one candidate to another, and one location to another.

This display has one shortcoming. If you compare the left two maps above, those for Amy Klobuchar and Beto O'Rourke, it looks like they have visited roughly similar number of cities when in fact Beto went to 42 compared to 25. Reducing the size of the dots might work.

Then, in the third visualization of the same data, the time dimension is emphasized. Lines are used to animate the daily movements of the candidates, one by one.

Nyt_candidatemap_3

Click here to see the animation.

When repetition is done right, it doesn't feel like repetition.

 


Check out the Lifespan of News project

Alberto Cairo introduces another one of his collaborations with Google, visualizing Google search data. We previously looked at other projects here.

The latest project, designed by Schema, Axios, and Google News Initiative, tracks the trending of popular news stories over time and space, and it's a great example of making sense of a huge pile of data.

The design team produced a sequence of graphics to illustrate the data. The top news stories are grouped by category, such as Politics & Elections, Violence & War, and Environment & Science, each given a distinct color maintained throughout the project.

The first chart is an area chart that looks at individual stories, and tracks the volume over time.

Lifespannews_areachart

To read this chart, you have to notice that the vertical axis measuring volume is a log scale, meaning that each tick mark up represents a 10-fold increase. Log scale is frequently used to draw far-away data closer to the middle, making it possible to see both ends of a wide distribution on the same chart. The log transformation introduces distortion deliberately. The smaller data look disproportionately large because of it.

The time scrolls automatically so that you feel a rise and fall of various news stories. It's a great way to experience the news cycle in the past year. The overlapping areas show competing news stories that shared the limelight at that point in time.

Just bear in mind that you have to mentally reverse the distortion introduced by the log scale.

***

In the second part of the project, they tackle regional patterns. Now you see a map with proportional symbols. The top story in each locality is highlighted with the color of the topic. As time flows by, the sizes of the bubbles expand and contract.

Lifespannews_bubblemap

Sometimes, the entire nation was consumed by the same story, e.g. certain obituaries. At other times, people in different regions focused on different topics.

***

In the last part of the project, they describe general shapes of the popularity curves. Most stories have one peak although certain stories like U.S. government shutdown will have multiple peaks. There is also variation in terms of how fast a story rises to the peak and how quickly it fades away.

The most interesting aspect of the project can be learned from the footnote. The data are not direct hits to the Google News stories but searches on Google. For each story, one (or more) unique search terms are matched, and only those stories are counted. A "control" is established, which is an excellent idea. The control gives meaning to those counts. The control used here is the number of searches for the generic term "Google News." Presumably this is a relatively stable number that is a proxy for general search activity. Thus, the "volume" metric is really a relative measure against this control.

 

 

 

 


Trump resistance chart: cleaning up order, importance, weight, paneling

Morningconsult_gopresistance_trVox featured the following chart when discussing the rise of resistance to President Trump within the GOP.

The chart is composed of mirrored bar charts. On the left side, with thicker pink bars that draw more attention, the design depicts the share of a particular GOP demographic segment that said they'd likely vote for a Trump challenger, according to a Morning Consult poll.

This is the primary metric of interest, and the entire chart is ordered by descending values from African Americans who are most likely (67%) to turn to a challenger to those who strongly support Trump and are the least likely (17%) to turn to someone else.

The right side shows the importance of each demographic, measured by the share of GOP. The relationship between importance and likelihood to defect from Trump is by and large negative but that fact takes a bit of effort to extract from this mirrored bar chart arrangement.

The subgroups are not complete. For example, the only ethnicity featured is African Americans. Age groups are somewhat more complete with under 18 being the only missing category.

The design makes it easy to pick off the most disaffected demographic segments (and the least, from the bottom) but these are disparate segments, possibly overlapping.

***

One challenge of this data is differentiating the two series of proportions. In this design, they use visual cues, like the height and width of the bars, colors, stacked vs not, data labels. Visual variety comes to the rescue.

Also note that the designer compensated for the lack of stacking on the left chart by printing data labels.

***

When reading this chart, I'm well aware that segments like urban residents, income more than $100K, at least college educated are overlapping, and it's hard to interpret the data the way it's been presented.

I wanted to place the different demographics into their natural groups, such as age, income, urbanicity, etc. Such a structure also surfaces demographic patterns, e.g. men are slightly more disaffected than women (not significant), people earning $100K+ are more unhappy than those earning $50K-.

Further, I'd like to make it easier to understand the importance factor - the share of GOP. Because the original form orders the demographics according to the left side, the proportions on the right side are jumbled.

Here is a draft of what I have in mind:

Redo_voxGOPresistance

The widths of the line segments show the importance of each demographic segment. The longest line segments are toward the bottom of the chart (< 40% likely to vote for Trump challenger).