Visually displaying multipliers

As I'm preparing a blog about another real-world study of Covid-19 vaccines, I came across the following chart (the chart title is mine).


As background, this is the trend in Covid-19 cases in the U.K. in the last couple of months, courtesy of


The React-1 Study sends swab kits to randomly selected people in England in order to assess the prevalence of Covid-19. Every month, there is a new round of returned swabs that are tested for Covid-19. This measurement method captures asymptomatic cases although it probably missed severe and hospitalized cases. Despite having some shortcomings, this is a far better way to measure cases than the hotch-potch assembling of variable-quality data submitted by different jurisdictions that has become the dominant source of our data.

Rounds 12 and 13 captured an inflection point in the pandemic in England. The period marked the beginning of the end of the belief that widespread vaccination will end the pandemic.

The chart I excerpted up top broke the data down by age groups. The column heights represent the estimated prevalence of Covid-19 during each round - also, described precisely in the paper as "swab positivity." Based on the study's design, one may generalize the prevalence to the population at large. About 1.5% of those aged 13-24 in England are estimated to have Covid-19 around the time of Round 13 (roughly early July).

The researchers came to the following conclusion:

We show that the third wave of infections in England was being driven primarily by the Delta variant in younger, unvaccinated people. This focus of infection offers considerable scope for interventions to reduce transmission among younger people, with knock-on benefits across the entire population... In our data, the highest prevalence of infection was among 12 to 24 year olds, raising the prospect that vaccinating more of this group by extending the UK programme to those aged 12 to 17 years could substantially reduce transmission potential in the autumn when levels of social mixing increase


Raise your hand if the graphics software you prefer dictates at least one default behavior you can't stand. I'm sure most hands are up in the air. No matter how much you love the software, there is always something the developer likes that you don't.

The first thing I did with today's chart is to get rid of all such default details.


For me, the bottom chart is cleaner and more inviting.


The researchers wanted readers to think in terms of Round 3 numbers as multiples of Round 2 numbers. In the text, they use statements such as:

weighted prevalence in round 13 was nine-fold higher in 13-17 year olds at 1.56% (1.25%, 1.95%) compared with 0.16% (0.08%, 0.31%) in round 12

It's not easy to perceive a nine-fold jump from the paired column chart, even though this chart form is better than several others. I added some subtle divisions inside each orange column in order to facilitate this task:


I have recommended this before. I'm co-opting pictograms in constructing the column chart.

An alternative is to plot everything on an index scale although one would have to drop the prevalence numbers.


The chart requires an additional piece of context to interpret properly. I added each age group's share of the population below the chart - just to illustrate this point, not to recommend it as a best practice.


The researchers concluded that their data supported vaccinating 13-17 year olds because that group experienced the highest multiplier from Round 12 to Round 13. Notice that the 13-17 year old age group represents only 6 percent of England's population, and is the least populous age group shown on the chart.

The neighboring 18-24 age group experienced a 4.5 times jump in prevalence in Round 13 so this age group is doing much better than 13-17 year olds, right? Not really.

While the same infection rate was found in both age groups during this period, the slightly older age group accounted for 50% more cases -- and that's due to the larger share of population.

A similar calculation shows that while the infection rate of people under 24 is about 3 times higher than that of those 25 and over, both age groups suffered over 175,000 infections during the Round 3 time period (the difference between groups was < 4,000).  So I don't agree that focusing on 13-17 year olds gives England the biggest bang for the buck: while they are the most likely to get infected, their cases account for only 14% of all infections. Almost half of the infections are in people 25 and over.


Election visual 3: a strange, mash-up visualization

Continuing our review of FiveThirtyEight's election forecasting model visualization (link), I now look at their headline data visualization. (The previous posts in this series are here, and here.)


It's a set of 22 maps, each showing one election scenario, with one candidate winning. What chart form is this?

Small multiples may come to mind. A small-multiples chart is a grid in which every component graphic has the same form - same chart type, same color scheme, same scale, etc. The only variation from graphic to graphic is the data. The data are typically varied along a dimension of interest, for example, age groups, geographic regions, years. The following small-multiples chart, which I praised in the past (link), shows liquor consumption across the world.

image from

Each component graphic changes according to the data specific to a country. When we scan across the grid, we draw conclusions about country-to-country variations. As with convention, there are as many graphics as there are countries in the dataset. Sometimes, the designer includes only countries that are directly relevant to the chart's topic.


What is the variable FiveThirtyEight chose to vary from map to map? It's the scenario used in the election forecasting model.

This choice is unconventional. The 22 scenarios is a subset of the 40,000 scenarios from the simulation - we are left wondering how those 22 are chosen.

Returning to our question: what chart form is this?

Perhaps you're reminded of the dot plot from the previous post. On that dot plot, the designer summarized the results of 40,000 scenarios using 100 dots. Since Biden is the winner in 75 percent of all scenarios, the dot plot shows 75 blue dots (and 25 red).

The map is the new dot. The 75 blue dots become 16 blue maps (rounded down) while the 25 red dots become 6 red maps.

Is it a pictogram of maps? If we ignore the details on the maps, and focus on the counts of colors, then yes. It's just a bit challenging because of the hole in the middle, and the atypical number of maps.

As with the dot plot, the map details are a nice touch. It connects readers with the simulation model which can feel very abstract.

Oddly, if you're someone familiar with probabilities, this presentation is quite confusing.

With 40,000 scenarios reduced to 22 maps, each map should represent 1818 scenarios. On the dot plot, each dot should represent 400 scenarios. This follows the rule for creating pictograms. Each object in a pictogram - dot, map, figurine, etc. - should encode an equal amount of the data. For the 538 visualization, is it true that each of the six red maps represents 1818 scenarios? This may be the case but not likely.

Recall the dot plot where the most extreme red dot shows a scenario in which Trump wins 376 out of 538 electoral votes (margin = 214). Each dot should represent 400 scenarios. The visualization implies that there are 400 scenarios similar to the one on display. For the grid of maps, the following red map from the top left corner should, in theory, represent 1,818 similar scenarios. Could be, but I'm not sure.


Mathematically, each of the depicted scenario, including the blowout win above, occurs with 1/40,000 chance in the simulation. However, one expects few scenarios that look like the extreme scenario, and ample scenarios that look like the median scenario.  

So, the right way to read the 538 chart is to ignore the map details when reading the embedded pictogram, and then look at the small multiples of detailed maps bearing in mind that extreme scenarios are unique while median scenarios have many lookalikes.

(Come to think about it, the analogous situation in the liquor consumption chart is the relative population size of different countries. When comparing country to country, we tend to forget that the data apply to large numbers of people in populous countries, and small numbers in tiny countries.)


There's a small improvement that can be made to the detailed maps. As I compare one map to the next, I'm trying to pick out which states that have changed to change the vote margin. Conceptually, the number of states painted red should decrease as the winning margin decreases, and the states that shift colors should be the toss-up states.

So I'd draw the solid Republican (Democratic) states with a lighter shade, forming an easily identifiable bloc on all maps, while the toss-up states are shown with a heavier shade.


Here, I just added a darker shade to the states that disappear from the first red map to the second.

What is a bad chart?

In the recent issue of Madolyn Smith’s Conversations with Data newsletter hosted by, she discusses “bad charts,” featuring submissions from several dataviz bloggers, including myself.

What is a “bad chart”? Based on this collection of curated "bad charts", it is not easy to nail down “bad-ness”. The common theme is the mismatch between the message intended by the designer and the message received by the reader, a classic error of communication. How such mismatch arises depends on the specific example. I am able to divide the “bad charts” into two groups: charts that are misinterpreted, and charts that are misleading.


Charts that are misinterpreted

The Causes of Death entry, submitted by Alberto Cairo, is a “well-designed” chart that requires “reading the story where it is inserted and the numerous caveats.” So readers may misinterpret the chart if they do not also partake the story at Our World in Data which runs over 1,500 words not including the appendix.


The map of Canada, submitted by Highsoft, highlights in green the provinces where the majority of residents are members of the First Nations. The “bad” is that readers may incorrectly “infer that a sizable part of the Canadian population is First Nations.”


In these two examples, the graphic is considered adequate and yet the reader fails to glean the message intended by the designer.


Charts that are misleading

Two fellow bloggers, Cole Knaflic and Jon Schwabish, offer the advice to start bars at zero (here's my take on this rule). The “bad” is the distortion introduced when encoding the data into the visual elements.

The Color-blindness pictogram, submitted by Severino Ribecca, commits a similar faux pas. To compare the rates among men and women, the pictograms should use the same baseline.


In these examples, readers who correctly read the charts nonetheless leave with the wrong message. (We assume the designer does not intend to distort the data.) The readers misinterpret the data without misinterpreting the graphics.


Using the Trifecta Checkup

In the Trifecta Checkup framework, these problems are second-level problems, represented by the green arrows linking up the three corners. (Click here to learn more about using the Trifecta Checkup.)


The visual design of the Causes of Death chart is not under question, and the intended message of the author is clearly articulated in the text. Our concern is that the reader must go outside the graphic to learn the full message. This suggests a problem related to the syncing between the visual design and the message (the QV edge).

By contrast, in the Color Blindness graphic, the data are not under question, nor is the use of pictograms. Our concern is how the data got turned into figurines. This suggests a problem related to the syncing between the data and the visual (the DV edge).


When you complain about a misleading chart, or a chart being misinterpreted, what do you really mean? Is it a visual design problem? a data problem? Or is it a syncing problem between two components?

Inspiration from a waterfall of pie charts: illustrating hierarchies

Reader Antonio R. forwarded a tweet about the following "waterfall of pie charts" to me:


Maarten Lamberts loved these charts (source: here).

I am immediately attracted to the visual thinking behind this chart. The data are presented in a hierarchy with three levels. The levels are nested in the sense that the pieces in each pie chart add up to 100%. From the first level to the second, the category of freshwater is sub-divided into three parts. From the second level to the third, the "others" subgroup under freshwater is sub-divided into five further categories.

The designer faces a twofold challenge: presenting the proportions at each level, and integrating the three levels into one graphic. The second challenge is harder to master.

The solution here is quite ingenious. A waterfall/waterdrop metaphor is used to link each layer to the one below. It visually conveys the hierarchical structure.


There remains a little problem. There is a confusion related to the part and the whole. The link between levels should be that one part of the upper level becomes the whole of the lower level. Because of the color scheme, it appears that the part above does not account for the entirety of the pie below. For example, water in lakes is plotted on both the second and third layers while water in soil suddenly enters the diagram at the third level even though it should be part of the "drop" from the second layer.


I started playing around with various related forms. I like the concept of linking the layers and want to retain it. Here is one graphic inspired by the waterfall pies from above:



A second take on the rural-urban election chart

Yesterday, I looked at the following pictograms used by Business Insider in an article about the rural-urban divide in American politics:


The layout of this diagram suggests that the comparison of 2010 to 2018 is a key purpose.

The following alternate directly plots the change between 2010 and 2018, reducing the number of plots from 4 to 2.


The 2018 results are emphasized. Then, for each party, there can be a net add or loss of seats.

The key trends are:

  • a net loss in seats in "Pure rural" districts, split by party;
  • a net gain of 3 seats in "rural-suburban" districts;
  • a loss of 10 Democratic seats balanced by a gain of 13 Republican seats.


Another experiment with enhanced pictogram

In a previous post, I experimented with an idea around enhancing pictograms. These are extremely popular charts used to show countable objects. I found another example in Business Insider's analysis of the mid-term election results. Here is an excerpt of a pair of pictograms that show the relative performance of Republicans and Democrats in districts that are classified as "Pure Rural" or "Rural-Suburban":


(Note that there is an error in the bottom left chart. There should be 24 blue squares not 34! In the remainder of the post, I will retain this error so that the revisions are comparable to the original.)

There are quite a few dimensions going on in this deceptively simple chart. There is the red domination of these rural districts to the tune of 75 to 80% share. There is the further weakening of Democrats from 2010 to 2018.  There is a shift of seats out of pure rural areas (- 13) and into rural-suburban (+14) from 2010 to 2018.

Anyone who learn of the above trends probably did so by reading off the data tables on the sides. It's a given that those tables, or simple bar charts can be more effective with this dataset.

What I like to explore is the pictogram, assuming that we are required to use a pictogram. Can the pictogram be enhanced to overcome some of its weaknesses?

The defining characteristic of the pictogram is the presence of individual units, which means the reader can count the units. This feature is also its downfall. In most pictograms, it is a bear to count the units. Try counting out the blue and red squares in the above image - and don't cheat by staring at the data tables!

My goal is to enhance the pictogram by making it easier for readers to count the units. The strategy is to place cues so that the units can be counted in larger groups like 5 or 10. Also, when possible, exploit symmetry.

Here is an example:


The squares are arranged to facilitate comparing the 2010 and 2018 numbers. So for rural-suburban, there were 10 fewer blue squares and +10+3 = +13 red squares.

This post to be continued in the next post ....