The canonical U.S. political map

The previous posts feature the canonical political map of U.S. presidential elections, the vote margin shift map. The following realization of it, made by NBC News (link), drills down to the counties with the largest Asian-American populations:

Nbcnews_votemarginshiftmap_asians

How does this map form encode the data?

***

The key visual element is the arrow. The arrow has a color, a length and also an angle.

The color scheme is fixed to the canonical red-blue palette attached to America's two major political parties.

The angle of the arrow, as seen in the legend, carries no data at all. All arrows are slanted at the same angles. Not quite; the political party is partially encoded into the angle, as the red arrows slant one way while the blue arrows always slant the other way. The degree of slant is constant everywhere, though.

So only the lengths of the arrows contain the vote margin gain/loss data. The legend shows arrows of two different lengths but vote margins have not been reduced to two values. As evident on the map, the arrow lengths are continuous.

The designer has a choice when it comes to assigning colors to these arrows. The colors found on the map above depicts the direction of the vote margin shift so red arrows indicate counties in which the Republicans gained share. (The same color encoding is used by the New York Times.)

Note that a blue county could have shifted to the right, and therefore appear as a red arrow even though the county voted for Kamala Harris in 2024. Alternatively, the designer could have encoded the 2024 vote margin in the arrow color. While this adds more data to the map, it could wreak havoc with our perception as now all four combinations are possible: red, pointing left; red, pointing right; blue, pointing left; and blue, pointing right.

***

To sum this all up, the whole map is built from a single data series, the vote margin shift expressed as a positive or negative percentage, in which a positive number indicates Republicans increased the margin. The magnitude of this data is encoded in the arrow length, ignoring the sign. The sign (direction) of the data, a binary value, is encoded into the arrow color as well as the direction of the arrow.

In other words, it's a proportional symbol map in which each geographical region is represented by a symbol (typically a bubble), and a single numeric measure is encoded in the size of the symbol. In many situations, the symbol's color is used to display a classification of the geographical regions.

The symbol used for the "wind map" are these slanted arrows. The following map, pulled from CNN (link), makes it clear that the arrows play only the role of a metaphor, the left-right axis of political attitude.

Cnn_votemarginshiftmap_triangles

This map is essentially the same as the "wind map" used by the New York Times and NBC News, the key difference being that instead of arrows, the symbol is a triangle. On proportional triangle maps, the data is usually encoded in the height of the triangles, so that the triangles can be interpreted as "hills". Thus, the arrow length in the wind map is the hill height in the triangle map. The only thing left behind is the left-right metaphor.

The CNN map added a detail. Some of the counties have a dark gray color. These are "flipped". A flip is defined as a change in "sign" of the vote margin from 2020 to 2024. A flipped county can exhibit either a blue or a red hill. The direction of the flip is actually constrained by the hill color. If it's a red hill, we know there is a shift towards Republicans, and in addition, the county flipped, it must be that Democrats won that county in 2020, and it flipped to Republicans. Similiar, if a blue hill sits on a dark gray county, then the county must have gone for Republicans in 2020 and flipped to Democrats in 2024.

 


Gaining precision by deleting data

The title is a bit of a paradox, isn't it? When we want more precise knowledge about something, we want to gather more data, at greater granularity. But it's not that simple.

Here is the famous "wind map" by the New York Times (link) showing vote margin shifts in the U.S. Presidential elections from 2020 to 2024, at the county level. A red arrow pointing rightward indicates a county in which the voters shifted toward the Republican candidate (Trump). It paints the red wave story loud and clear.

Nyt_votemarginshiftmap

Even though every county is on the map, this map alone doesn't answer all possible questions about vote margin shift. For example, someone might be interested in the vote margin shift in counties with high Hispanic populations. It's impossible to learn this from the above map, even if one has a list of the names of these counties.

The answer is found in the following map, published by NBC News here:

Nbcnews_votemarginshiftmap_hispanics

The story is also very clear. This map can be thought of as the NYT map minus the counties that have negligible Hispanic populations. By deleting all unrelated data, the designer highlights the story about Hispanic voters.

The reader can use the tab up top to see partial shift maps that emphasize different demographic groups. Well done!

 

 

 

 


Election coverage prompts good graphics

The election broadcasts in the U.S. are full-day affairs, and they make a great showcase for interactive graphics.

The election setting is optimal as it demands clear graphics that are instantly digestible. Anything else would have left viewers confused or frustrated.

The analytical concepts conveyed by the talking heads during these broadcasts are quite sophisticated, and they did a wonderful job at it.

***

One such concept is the value of comparing statistics against a benchmark (or, even multiple benchmarks). This analytics tactic comes in handy in the 2024 election especially, because both leading candidates are in some sense incumbents. Kamala was part of the Biden ticket in 2020, while Trump competed in both 2016 and 2020 elections.

Msnbc_2024_ga_douglas

In the above screenshot, taken around 11 pm on election night, the MSNBC host (that looks like Steve K.) was searching for Kamala votes because it appeared that she was losing the state of Georgia. The question of the moment: were there enough votes left for her to close the gap?

In the graphic (first numeric column), we were seeing Kamala winning 65% of the votes, against Trump's 34%, in Douglas county in Georgia. At first sight, one would conclude that Kamala did spectacularly well here.

But, is 65% good enough? One can't answer this question without knowing past results. How did Biden-Harris do in the 2020 election when they won the presidency?

The host touched the interactive screen to reveal the second column of numbers, which allows viewers to directly compare the results. At the time of the screenshot, with 94% of the votes counted, Kamala was performing better in this county than they did in 2020 (65% vs 62%). This should help her narrow the gap.

If in 2020, they had also won 65% of the Douglas county votes, then, we should not expect the vote margin to shrink after counting the remaining 6% of votes. This is why the benchmark from 2020 is crucial. (Of course, there is still the possibility that the remaining votes were severely biased in Kamala's favor but that would not be enough, as I'll explain further below.)

All stations used this benchmark; some did not show the two columns side by side, making it harder to do the comparison.

Interesting side note: Douglas county has been rapidly shifting blue in the last two decades. The proportion of whites in the county dropped from 76% to 35% since 2000 (link).

***

Though Douglas county was encouraging for Kamala supporters, the vote gap in the state of Georgia at the time was over 130,000 in favor of Trump. The 6% in Douglas represented only about 4,500 votes (= 70,000*0.06/0.94). Even if she won all of them (extremely unlikely), it would be far from enough.

So, the host flipped to Fulton county, the most populous county in Georgia, and also a Democratic stronghold. This is where the battle should be decided.

Msnbc_2024_ga_fulton

Using the same format - an interactive version of a small-multiples arrangement, the host looked at the situation in Fulton. The encouraging sign was that 22% of the votes here had not yet been counted. Moreover, she captured 73% of those votes that had been tallied. This was 10 percentage points better than her performance in Douglas, Ga. So, we know that many more votes were coming in from Fulton, with the vast majority being Democratic.

But that wasn't the full story. We have to compare these statistics to our 2020 benchmark. This comparison revealed that she faced a tough road ahead. That's because Biden-Harris also won 73% of the Fulton votes in 2020. She might not earn additional votes here that could be used to close the state-wide gap.

If the 73% margin held to the end of the count, she would win 90,000 additional votes in Fulton but Trump would win 33,000, so that the state-wide gap should narrow by 57,000 votes. Let's round that up, and say Fulton halved Trump's lead in Georgia. But where else could she claw back the other half?

***

From this point, the analytics can follow one of two paths, which should lead to the same conclusion. The first path runs down the list of Georgia counties. The second path goes up a level to a state-wide analysis, similar to what was done in my post on the book blog (link).

Cnn_2024_ga

Around this time, Georgia had counted 4.8 million votes, with another 12% outstanding. So, about 650,000 votes had not been assigned to any candidate. The margin was about 135,000 in Trump's favor, which amounted to 20% of the outstanding votes. But that was 20% on top of her base value of 48% share, meaning she had to claim 68% of all remaining votes. (If in the outstanding votes, she got the same share of 48% as in the already-counted, then she would lose the state with the same vote margin as currently seen, and would lose by even more absolute votes.)

The reason why the situation was more hopeless than it even sounded here is that the 48% base value came from the 2024 votes that had been counted; thus, for example, it included her better-than-benchmark performance in Douglas county. She would have to do even better to close the gap! In Fulton, which has the biggest potential, she was unable to push the vote share above the 2020 level.

That's why in my book blog (link), I suggested that the networks could have called Georgia (and several other swing states) earlier, if they used "numbersense" rather than mathematical impossibility as the criterion.

***

Before ending, let's praise the unsung heroes - the data analysts who worked behind the scenes to make these interactive graphics possible.

The graphics require data feeds, which cover a broad scope, from real-time vote tallies to total votes casted, both at the county level and the state level. While the focus is on the two leading candidates, any votes going to other candidates have to be tabulated, even if not displayed. The talking heads don't just want raw vote counts; in order to tell the story of the election, they need some understanding of how many votes are still to be counted, where they are coming from, what's the partisan lean on those votes, how likely is the result going to deviate from past elections, and so on.

All those computations must be automated, but manually checked. The graphics software has to be reliable; the hosts can touch any part of the map to reveal details, and it's not possible to predict all of the user interactions in advance.

Most importantly, things will go wrong unexpectedly during election night so many data analysts were on standby, scrambling to fix issues like breakage of some data feed from some county in some state.


Expert handling of multiple dimensions of data

I enjoyed reading this Washington Post article about immigration in America. It features a number of graphics. Here's one graphic I particularly like:

Wpost_smallmultiplesmap

This is a small multiples of six maps, showing the spatial distribution of immigrants from different countries. The maps reveal some interesting patterns: Los Angeles is a big favorite of Guatamalans while Houston is preferred by Hondurans. Venezuelans like Salt Lake City and Denver (where there are also some Colombians and Mexicans). The breadth of the spatial distribution surprises me.

The dataset behind this graphic is complex. It's got country of origin, place of settlement, and time of arrival. The maps above collapsed the time dimension, while drawing attention to the other two dimensions.

***

They have another set of charts that highlight the time dimension while collapsing the place of settlement dimension. Here's one view of it:

Wpost_inkblot_overall

There are various names for this chart form. Stream river is one. I like to call it "inkblot", where the two sides are symmetric around the middle vertical line. The chart shows that "migrants in the U.S. immigration court" system have grown substantially since the end of the Covid-19 pandemic, during which they stopped coming.

I'm not a fan of the inkblot. One reason is visible in the following view, which showcases three Central American countries.

Wpost_inkblot_centralamerica

The main message is clear enough. The volume of immigrants from these three countries have been relatively stable over the last decade, with a bulge in the late 2000s. The recent spurt in migrants have come from other places.

But try figuring out what proportion of total immigration is accounted for by these three countries say in 2024. It's a task that is tougher than it should be, and the culprit is that the "other countries" category has been split in half with the two halves separated.

 


Prime visual story-telling

A story from the New York Times about New York City neighborhoods has been making the rounds on my Linkedin feed. The Linkedin post sends me to this interactive data visualization page (link).

Here, you will find a multi-colored map.

Nyt_newyorkneighborhoodsmap

The colors show the extant of named neighborhoods in the city. If you look closely, the boundaries between neighborhoods are blurred since it's often not clear where one neighborhood ends and where another one begins. I was expecting this effect when I recognize the names of the authors, who have previously published other maps that obsess over spatial uncertainty.

I clicked on an area for which I know there may be differing opinions:

Nyt_newyorkneighborhoods_example

There was less controversy than I expected.

***

What was the dataset behind this dataviz project? How did they get such detailed data on every block of the city? Wouldn't they have to interview a lot of residents to compile the data?

I'm quite impressed with what they did. They put up a very simple survey (emphasis on: very simple). This survey is only possible with modern browser technology. It asks the respondent to pinpoint the location of where they live, and name their neighborhood. Then it asks the respondent to draw a polygon around their residence to include the extant of the named neighborhood. This consists of a few simple mouse clicks on the map that shows the road network. Finally, the survey collects optional information on alternative names for the neighborhood, etc.

When they process the data, they assign the respondent's neighborhood name to all blocks encircled by the polygon. This creates a lot of data in a few brush strokes, so to speak. This is a small (worthwhile) tradeoff even though the respondent didn't really give an answer for every block.

***

Bear with me, I'm getting to the gist of this blog post. The major achievement isn't the page that was linked to above. The best thing the dataviz team did here is the visual story that walks the reader through insights drawn from the dataviz. You can find the visual story here.

What are the components of a hugely impressive visual story?

  • It combines data visualization with old-fashioned archival research. The historical tidbits add a lot of depth to the story.
  • It combines data visualization with old-fashioned reporting. The quotations add context to how people think about neighborhoods - something that cannot be obtained from the arms-length process of conducting an online survey.
  • It highlights curated insights from the underlying data - even walking the reader step by step through the relevant sections of the dataviz that illustrate these insights.

At the end of this story, some fraction of users may be tempted to go back to the interactive dataviz to search for other insights, or obtain answers to their personalized questions. They are much better prepared to do so, having just seen how to use the interactive tool!

***

The part of the visual story I like best is toward the end. Instead of plotting all the data on the map, they practice some restraint, and filter the data. They show the boundaries that have reached at least a certain level of consensus among the respondents.

The following screenshot shows those areas for which at least 90% agree.

Nyt_newyorkneighborhoods_90pc

Pardon the white text box, I wasn't able to remove it.

***

One last thing...

Every time an analyst touches data, or does something with data, s/he imposes assumptions, and sometimes, these assumptions are so subtle that even the analyst may not have noticed. Frequently, these assumptions are baked into the analytical "models," which is why they may fall through the cracks.

One such assumption in making this map is that every block in the city belongs to at least one named neighborhood. An alternative assumption is that neighborhoods are named only because certain blocks have things in common, and because these naming events occur spontaneously, it's perfectly ok to have blocks that aren't part of any named neighborhood.

 

 


The curse of dimensions

Usually the curse of dimensions concerns data with many dimensions. But today I want to talk about a different kind of curse. This is the curse of dimensions in mapping.

We are only talking about a few dimensions, typically between 3 and 6, so small number of dimensions. And yet it's already a curse. Maps are typically drawn in two dimensions. Those two dimensions are usually spoken for: they show the x- and y-coordinate of space. If we want to include a third, fourth or fifth dimension of data on the map, we have to appeal to colors, shapes, and so on. Cartographers have long realized that adding dimensions involves tradeoffs.

***

Andrew featured some colored bubble maps in a recent post. Here is one example:

Dorlingmap_percenthispanic

The above map shows the proportion of population in each U.S. county that is Hispanic. Each county is represented by a bubble pinned to the centroid of the county. The color of the bubble shows the data, divided into demi-deciles so they are using a equal-width binning method. The size of a bubble indicates the size of a county.

The map is sometimes called a "Dorling map" after its presumptive original designer.

I'm going to use this map to explore the curse of dimensions.

***

It's clear from the design that county-level details are regarded as extremely important. As there are about 3,000 counties in the U.S., I don't see how any visual design can satisfy this requirement without giving up clarity.

More details require more objects, which spread readers' attention. More details contain more stories, but that too dilutes their focus.

Another principle of this map is to not allow bubbles to overlap. Of course, having bubbles overlap or print on top of one another is a visual faux pas. But to prevent such behavior on this particular design means the precise locations are sacrificed. Consider the eastern seaboard where there are densely populated counties: they are not pinned to their centroids. Instead, the counties are pushed out of their normal positions, similar to making a cartogram.

I remarked at the start – erroneously but deliberately – that each bubble is centered at the centroid of each county. I wonder how many of you noticed the inaccuracy of that statement. If that rule were followed, then the bubbles in New England would have overlapped and overprinted. 

This tradeoff affects how we perceive regional patterns, as all the densely populated regions are bent out of shape.

Another aspect of the data that the designer treats as important is county population, or rather relative county population. Relative – because bubble size don't portray absolutes, plus the designer didn't bother to provide a legend to decipher bubble sizes.

The tradeoff is location. The varying bubble sizes, coupled with the previous stipulation of no overlapping, push bubbles from their proper centroids. This forced displacement disproportionately affects larger counties.

***

What if we are willing to sacrifice county-level details?

In this setting, we are not obliged to show every single county. One alternative is to perform spatial smoothing. Intuitively, think about the following steps: plot all these bubbles in their precise locations, turn the colors slightly transparent, let them overlap, blend away the edges, and then we have a nice picture of where the Hispanic people are located.

I have sacrificed the county-level details but the regional pattern becomes much clearer, and we don't need to deviate from the well-understood shape of the standard map.

This version reminds me of the language maps that Josh Katz made.

Joshkatz_languagemap

Here is an old post about these maps.

This map design only reduces but does not eliminate the geographical inaccuracy. It uses the same trick as the Dorling map: the "vertical" density of population has been turned into "horizontal" span. It's a bit better because the centroids are not displaced.

***

Which map is better depends on what tradeoffs one is making. In the above example, I'd have made different choices.

 

One final thing – it's minor but maybe not so minor. Most of the bubbles on the map especially in the middle are tiny; as most of them have Hispanic proportions that are on the left side of the scale, they should be showing light orange. However, all of them appear darker than they ought to be. That's because each bubble has a dark border. For small bubbles, the ratio of ink on the border is a high proportion of the ink for the entire object.


Do you want a taste of the new hurricane cone?

The National Hurricane Center (NHC) put out a press release (link to PDF) to announce upcoming changes (in August 2024) to their "hurricane cone" map. This news was picked up by Miami Herald (link).

New_hurricane_map_2024

The above example is what the map looks like. (The data are probably fake since the new map is not yet implemented.)

The cone map has been a focus of research because experts like Alberto Cairo have been highly critical of its potential to mislead. Unfortunately, the more attention paid to it, the more complicated the map has become.

The latest version of this map comprises three layers.

The bottom layer is the so-called "cone". This is the white patch labeled below as the "potential track area (day 1-5)".  Researchers dislike this element because they say readers tend to misinterpret the cone as predicting which areas would be damaged by hurricane winds when the cone is intended to depict the uncertainty about the path of the hurricane. Prior criticism has led the NHC to add the text at the top of the chart, saying "The cone contains the probable path of the storm center but does not show the size of the storm. Hazardous conditions can occur outside of the cone."

The middle layer are the multi-colored bits. Two of these show the areas for which the NHC has issued "watches" and "warnings". All of these color categories represent wind speeds at different times. Watches and warnings are forecasts while the other colors indicate "current" wind speeds. 

The top layer consists of black dots. These provide a single forecast of the most likely position of the storm, with the S, H, M labels indicating the most likely range of wind speeds at forecast times.

***

Let's compare the new cone map to a real hurricane map from 2020. (This older map came from a prior piece also by NHC.)

Old_hurricane_map_2020

Can we spot the differences?

To my surprise, the differences were minor, in spite of the pre-announced changes.

The first difference is a simplification. Instead of dividing the white cone (the bottom layer) into two patches -- a white patch for days 1-3, and a dotted transparent patch for days 4-5, the new map aggregates the two periods. Visually, simplifying makes the map less busy but loses the implicit acknowledge found in the old map that forecasts further out are not as reliable.

The second point of departure is the addition of "inland" warnings and watches. Notice how the red and blue areas on the old map hugged the coastline while the red and blue areas on the new map reach inland.

Both changes push the bottom layer, i.e. the cone, deeper into the background. It's like a shrink-flation ice cream cone that has a tiny bit of ice cream stuffed deep in its base.

***

How might one improve the cone map? I'd start by dismantling the layers. The three layers present answers to different problems, albeit connected.

Let's begin with the hurricane forecasting problem. We have the current location of the storm, and current measurements of wind speeds around its center. As a first requirement, a forecasting model predicts the path of the storm in the near future. At any time, the storm isn't a point in space but a "cloud" around a center. The path of the storm traces how that cloud will move, including any expansion or contraction of its radius.

That's saying a lot. To start with, a forecasting model issues the predicted average path -- the expected path of the storm's center. This path is (not competently) indicated by the black dots in the top layer of the cone map. These dots offer only a sampled view of the average path.

Not surprisingly, there is quite a bit of uncertainty about the future path of any storm. Many models simulate future worlds, generating many predictions of the average paths. The envelope of the most probable set of paths is the "cone". The expanding width of the cone over time reflects the higher uncertainty of our predictions further into the future. Confusingly, this cone expansion does not depict spatial expansion of either the storm's size or the potential areas that may suffer the greatest damage. Both of those tend to shrink as hurricanes move inland.

Nevertheless, the cone and the black dots are connected. The path drawn out by the black dots should be the average path of the center of the storm.

The forecasting model also generates estimates of wind speeds. Those are given as labels inside the black dots. The cone itself offers no information about wind speeds. The map portrays the uncertainty of the position of the storm's center but omits the uncertainty of the projected wind speeds.

The middle layer of colored patches also inform readers about model projections - but in an interpreted manner. The colors portray hurricane warnings and watches for specific areas, which are based on projected wind speeds from the same forecasting models described above. The colors represent NHC's interpretation of these model outputs. Each warning or watch simultaneously uses information on location, wind speed and time. The uncertainty of the projected values is suppressed.

I think it's better to use two focused maps instead of having one that captures a bit of this and a bit of that.

One map can present the interpreted data, and show the areas that have current warnings and watches. This map is about projected wind strength in the next 1-3 days. It isn't about the center of the storm, or its projected path. Uncertainty can be added by varying the tint of the colors, reflecting the confidence of the model's prediction.

Another map can show the projected path of the center of the storm, plus the cone of uncertainty around that expected path. I'd like to bring more attention to the times of forecasting, perhaps shading the cone day by day, if the underlying model has this level of precision.

***

Back in 2019, I wrote a pretty long post about these cone maps. Well worth revisiting today!


Messing with expectations

A co-worker sent me to the following map, found in Forbes:

Forbes_gastaxmap

It shows the amount of state tax surcharge per gallon of gas in the U.S. And it's got one of the most common issues found in choropleth maps - the color scheme runs opposite to reader expectations.

Typically, if we see a red-green color scale, we would expect red to represent large numbers and green, small numbers. This map reverses the typical setup: California, the state with the heftiest gas tax, is shown green.

I know, I know - if we apply the typical color scheme, California would bleed red, and it's a blue state, damn it.

The solution is to avoid the red color. Just don't use red or blue.

Junkcharts_redo_forbes_gastaxmap_green

There is no need to use two colors either.

***

A few minor fixes. Given that all dollar amounts on the map are shown to two decimal places, the legend labels should also be shown to 2 decimal places, and with dollar signs.

Forbes_gastaxmap_legend

The subtitle should read "Dollars per gallon" instead of "Cents per gallon". Alternatively, keep "Cents per gallon" but convert all data labels into cents.

Some of the states are missing data labels.

***

I recast this as a small-multiples by categorizing states into four subgroups.

Junkcharts_redo_forbes_gastaxmap_split

With this change, one can almost justify using maps because there is sort of a spatial pattern.

 

 


To a new year of pleasant surprises

Happy new year!

This year promises to be the year of AI. Already last year, we pretty much couldn't lift an eyebrow without someone making an AI claim. This year will be even noisier. Visual Capitalist acknowledged this by making the noisiest map of 2023:

Visualcapitalist_01_Generative_AI_World_map sm

I kept thinking they have a geography teacher on the team, who really, really wants to give us a lesson of where each country is on the world map.

All our attention is drawn to the guiding lines and the random scatter of numbers. We have to squint to find the country names. All this noise drowns out the attempt to make sense of the data, namely, the inset of the top 10 countries in the lower left corner, and the classification of countries into five colored groups.

A small dose of editing helps. Remove most data labels except for the countries for which they have a story. Provide a data table below for those who want details.

***

In the Methodology section, the data analysts (possibly from a third party called ElectronicsHub) indicated that they used Google search volume of "over 90 of the most popular generative AI tools", calculating the "overall volume across all tools per 100k population". Then came a baffling line: "all search volumes were scaled up according to the search engine market share in each country, using figures from statscounter.com." (Note: in the following, I'm calling the data "AI-related search" for simplicity even though their measurement is restricted to the terms described above.)

It took me a while to comprehend what they could have meant by that line. I believe this is what that sentence means: Google is not the only search engine out there so by only researching Google search volume, they undercount the true search volume. How did they deal with the missing data problem? They "scaled up" so if Google is 80% of the search volume in a country, then they divide the Google volume by 80% to "scale up" to 100%.

Whenever we use heuristics like this, we should investigate its foundations. What is the implicit assumption behind this scaling-up procedure? It is that all search engines are effectively the same. The users of non-Google search engines behave exactly as the Google search engine users. If the analysts somehow could get their hands on the data of other search engines, they would discover that the proportion of search volume that is AI-related is effectively the same as seen on Google.

This is one of those convenient, and obviously wrong assumptions – if true, the market would have no need for more than one search engine. Each search engine's audience is just a random sample from the population of all users.

Let's make up some numbers. Let's say Google has 80% share of search volume in Country A, and AI-related search 10% of the overall Google search volume. The remaining search engines have 20% share. Scaling up here means taking the 8% of Google AI-related search volume, divide by 80%, which yields 10%. Since Google owns 8% of the 10%, the other search engines see 2% of overall search volume attributed to AI searches in Country A. Thus, the proportion of AI-related searches on those other search engines is 2%/20% = 10%.

Now, in certain countries, Google is not quite as dominant. Let's say Google only has 20% share of Country B's search volume. AI-related search on Google is 2%, which is 10% of its total. Using the same scaling-up procedure, the analysts have effectively assumed that the proportion of AI-related search volume in the dominant search engines in Country B to be also 10%.

I'm using the above calculations to illustrate a shortcoming of this heuristic. Using this procedure inflates the search volume in countries in which Google is less dominant because the inflation factor is the reciprocal of Google's market share. The less dominant Google is, the larger the inflation factor.

What's also true? The less dominant Google is, the smaller proportion of the total data the analysts are able to see, the lower the quality of the available information. So the heuristic is the most influential where it has the greatest uncertainty.

***

Hope your new year is full of uncertainty, and your heuristics shall lead you to pleasant surprises.

If you like the blog's content, please spread the word. I'm looking forward to sharing more content as the world of data continues to evolve at an amazing pace.

Disclosure: This blog post is not written by AI.


Partition of Europe

A long-time reader sent me the following map via twitter:

Europeelects_map

This map tells how the major political groups divide up the European Parliament. I’ll spare you the counting. There are 27 countries, and nine political groups (including the "unaffiliated").

The key chart type is a box of dots. Each country gets its own box. Each box has its own width. What determines the width? If you ask me, it’s the relative span of the countries on the map. For example, the narrow countries like Ireland and Portugal have three dots across while the wider countries like Spain, Germany and Italy have 7, 10 and 8 dots across respectively.

Each dot represents one seat in the Parliament. Each dot has one of 9 possible colors. Each color shows a political lean e.g. the green dots represent Green parties while the maroon dots display “Left” parties.

The end result is a counting game. If we are interested in counts of seats, we have to literally count each dot. If we are interested in proportion of seats, take your poison: either eyeball it or count each color and count the total.

Who does the underlying map serve? Only readers who know the map of Europe. If you don’t know where Hungary or Latvia is, good luck. The physical constraints of the map work against the small-multiples set up of the data. In a small multiples, you want each chart to be identical, except for the country-specific data. The small-multiples structure requires a panel of equal-sized cells. The map does not offer this feature, as many small countries are cramped into Eastern Europe. Also, Europe has a few tiny states e.g. Luxembourg (population 660K)  and Malta (population 520K). To overcome the map, the designer produces boxes of different sizes, substantially loading up the cognitive burden on readers.

The map also dictates where the boxes are situated. The centroids of each country form the scaffolding, with adjustments required when the charts overlap. This restriction ensures a disorderly appearance. By contrast, the regular panel layout of a small multiples facilitates comparisons.

***

Here is something I sketched using a tile map.

Eu parties print sm

First, I have to create a tile map of European countries. Some parts, e.g. western part, are straightforward. The eastern side becomes very congested.

The tile map encodes location in an imprecise sense. Think about the scaffolding of centroids of countries referred to prior. The tile map imposes an order to the madness - we're shifting these centroids so that they line up in a tidier pattern. What we gain in comparability we concede in location precision.

For the EU tile map, I decided to show the Baltic countries in a row rather than a column; the latter would have been more faithful to the true geography. Malta is shown next to Italy even though it could have been placed below. Similarly, Cyprus in relation to Greece. I also included several key countries that are not part of the EU for context.

Instead of raw seat counts, I'm showing the proportion of seats within each country claimed by each political group. I think this metric is more useful to readers.

The legend is itself a chart that shows the aggregate statistics for all 27 countries.