Visual story-telling: do you know or do you think?

One of the most important data questions of all time is: do you know? or do you think?

And one of the easiest traps to fall into is: I think, therefore I know.

***

Visual story-telling can be great but it can also mislead. Deception sometimes happens when readers are nudged to "fill in the blanks" with stuff they think they know, but they don't.

A Twitter reader asked me to look at the map in this Los Angeles Times (paywall) opinion column.

Latimes_lifeexpectancy_postcovid

The column promptly announces its premise:

Years of widening economic inequality, compounded by the pandemic and political storm and stress, have given Americans the impression that the country is on the wrong track. Now there’s empirical data to show just how far the country has run off the rails: Life expectancies have been falling.

The writer creates the expectation that he will reveal evidence in the form of data to show that life expectancies have been driven down by economic inequality, pandemic, and politics. Does he succeed?

***

The map portrays average life expectancy (at birth) for some mysterious, presumably very recent, year for every county in the United States. From the color legend, we learn that the bottom-to-top range is about 20 years. There is a clear spatial pattern, with the worst results in the south (excepting south Florida).

The choice of colors is telling. Red and blue on a U.S. map has heavy baggage, as they signify the two main political parties in the country. Given that the author believes politics to be a key driver of health outcomes, the usage of red and blue here is deliberate. Throughout the article, the columnist connects the lower life expectancies in southern states to its politics.

For example, he said "these geographical disparities aren't artifacts of pure geography or demographics; they're the consequences of policy decisions at the state level... Of the 20 states with the worst life expectancies, eight are among the 12 that have not implemented Medicaid expansion under the Affordable Care Act..."

Casual readers may fall into a trap here. There is nothing on the map itself that draws the connection between politics and life expectancies; the idea is evoked purely through the red-blue color scheme. So, as readers, we are filling in the blanks with our own politics.

What could have been done instead? Let's look at the life expectancy map side by side with the map of the U.S. 2020 Presidential election.

Junkcharts_lifeexpectancy_elections

Because of how close recent elections have been, we may think the political map has a nice balance of red and blue but it isn't. The Democrats' votes are heavily concentrated in densely-populated cities so most of the Presidential election map is red. When placed next to each other, it's obvious that politics don't explain the variance in life expectancy well. The Midwest is deep red and yet they have above average life expectancies. I have circled out various regions that contradict the claim that Republican politics drove life expectancies down.

It's not sufficient to point to the South, in which Republican votes and life expectancy are indeed inversely correlated. A good theory has to explain most of the country.

***

The columnist also suggests that poverty is the cause of low life expectancy. That too cannot be gleaned from the published map. Again, readers are nudged to use their wild imagination to fill in the blank.

Data come to the rescue. Here is a side-by-side comparison of the map of life expectancies and the map of median incomes.

Junkcharts_lifeexpectancy_income

A similar conundrum. While the story feels right in the South, it fails to explain the northwest, Florida, and various other parts of the country. Take a look again at the circled areas. Lower income brackets are also sometimes associated with high life expectancies.

***

The author supplies a third cause of lower life expectancies: Covid-19 response. Because Covid-19 was the "most obvious and convenient" explanation for the loss of life expectancy during the pandemic, this theory suggests that the red areas on the life expectancy map should correspond to the regions most ravaged by Covid-19.

Let's see the data.

Junkcharts_lifeexpectancy_covidcases

The map on the right shows the number of confirmed cases until June 2021. As before, the correlation holds somewhat in the South but there are notable exceptions, e.g. the Midwest. We also have states with low Covid-19 cases but below-average life expectancy.

***

What caused the decline of life expectancy in the U.S. - which began before the pandemic, and has continued beyond - is highly complex, beyond what a single map or a pair of maps or a few pairs of maps could convey. Showing a red-blue map presents a trap for readers to fall into, in which they start thinking, without knowing.

 


Bivariate choropleths

A reader submitted a link to Joshua Stephen's post about bivariate choropleths, which is the technical term for the map that FiveThirtyEight printed on abortion bans, discussed here. Joshua advocates greater usage of maps with two-dimensional color scales.

As a reminder, the fundamental building block is expressed in this bivariate color legend:

Fivethirtyeight_abortionmap_colorlegend

Counties are classified into one of these nine groups, based on low/middle/high ratings on two dimensions, distance and congestion.

The nine groups are given nine colors, built from superimposing shades of green and pink. All nine colors are printed on the same map.

Joshuastephens_singlemap

Without a doubt, using these nine related colors are better than nine arbitrary colors. But is this a good data visualization?

Specifically, is the above map better than the pair of maps below?

Joshuastephens_twomaps

The split map is produced by Josh to explain that the bivariate choropleth is just the superposition of two univariate choropleths. I much prefer the split map to the superimposed one.

***

Think about what the reader goes through when comparing two counties.

Junkcharts_bivariatechoropleths

Superimposing the two univariate maps solves one problem: it removes the need to scan back and forth between two maps, looking for the same locations, something that is imprecise. (Unless, the map is interactive, and highlighting one county highlights the same county in the other map.)

For me, that's a small price to pay for quicker translation of color into information.

 

 


Area chart is not the solution

A reader left a link to a Wiki chart, which is ghastly:

House_Seats_by_State_1789-2020_Census

This chart concerns the trend of relative proportions of House representatives in the U.S. Congress by state, and can be found at this Wikipedia entry. The U.S. House is composed of Representatives, and the number of representatives is roughly proportional to each state's population. This scheme actually gives small states disporportional representation, since the lowest number of representatives is 1 while the total number of representatives is fixed at 435.

We can do a quick calculation: 1/435 = 0.23% so any state that has less than 0.23% of the population is over-represented in the House. Alaska, Vermont and Wyoming are all close to that level. The primary way in which small states get larger representation is via the Senate, which sits two senators per state no matter the size. (If you've wondered about Nate Silver's website: 435 Representatives + 100 Senators + 3 for DC = 538 electoral votes for U.S. Presidental elections.)

***

So many things have gone wrong with this chart. There are 50 colors for 50 states. The legend arranges the states by the appropriate metric (good) but in ascending order (bad). This is a stacked area chart, which makes it very hard to figure out the values other than the few at the bottom of the chart.

A nice way to plot this data is a tile map with line charts. I found a nice example that my friend Xan put together in 2018:

Xang_cdcflu_tilemap_lines

A tile map is a conceptual representation of the U.S. map in which each state is represented by equal-sized squares. The coordinates of the states are distorted in order to line up the tiles. A tile map is a small-multiples setup in which each square contains a chart of the same design to faciliate inter-state comparisons.

In the above map, Xan also takes advantage of the foregrounding concept. Each chart actually contains all 50 lines for every state, all shown in gray while the line for the specific state is bolded and shown in red.

***

A chart with 50 lines looks very different from one with 50 areas stacked on each other. California, the most populous state, has 12% of the total population so the line chart has 50 lines that will look like spaghetti. Thus, the fore/backgrounding is important to make sure it's readable.

I suspect that the designer chose a stacked area chart because the line chart looked like spaghetti. But that's the wrong solution. While the lines no longer overlap each other, it is a real challenge to figure out the state-level trends - one has to focus on the heights of the areas, rather than the boundary lines.

[P.S. 2/27/2023] As we like to say, a picture is worth a thousand words. Twitter reader with the handle LHZGJG made the tile map I described above. It looks like this:

Lhzgjg_redo_houseapportionment

You can pick out the states with the key changes really fast. California, Texas, Florida on the upswing, and New York, Pennsylvania going down. I like the fact that the state names are spelled out. Little tweaks are possible but this is a great starting point. Thanks LHZGJG! ]

 


Visual cues affect how data are perceived

Here's a recent NYT graphic showing California's water situation at different time scales (link to article).

Nyt_california_drought

It's a small multiples display, showing the spatial distribution of the precipitation amounts in California. The two panels show, respectively, the short-term view (past month) and the longer-term view (3 years). Precipitation is measured in relative terms,  so what is plotted is the relative ratio of precipitation in the reference period, with 100 being the 30-year average.

Green is much wetter than average while brown is much drier than average.

The key to making this chart work is a common color scheme across the two panels.

Also, the placement of major cities provides anchor points for our eyes to move back and forth between the two panels.

***

The NYT graphic is technically well executed. I'm a bit unhappy with the headline: "Recent rains haven't erased California's long-term drought".

At the surface, the conclusion seems sensible. Look, there is a lot of green, even deep green, on the left panel, which means the state got lots more rain than usual in the past month. Now, on the right panel, we find patches of brown, and very little green.

But pay attention to the scale. The light brown color, which covers the largest area, has value 70 to 90, thus, these regions have gotten 10-30% less precipitation than average in the past three years relative to the 30-year average.

Here's the question: what does it mean by "erasing California's long-term drought"? Does the 3-year average have to equal or exceed the 30-year average? Why should that be the case?

If we took all 3-year windows within those 30 years, we're definitely not going to find that each such 3-year average falls at or above the 30-year average. To illustrate this, I pulled annual rainfall data for San Francisco. Here is a histogram of 3-year averages for the 30-year period 1991-2020.

Redo_nyt_californiadrought_sfrainfall

For example, the first value is the average rainfall for years 1989, 1990 and 1991, the next value is the average of 1990, 1991, and 1992, and so on. Each value is a relative value relative to the overall average in the 30-year window. There are two more values beyond 2020 that is not shown in the histogram. These are 57%, and 61%, so against the 30-year average, those two 3-year averages were drier than usual.

The above shows the underlying variability of the 3-year averages inside the reference time window. We have to first define "normal", and that might be a value between 70% and 130%.

In the same way, we can establish the "normal" range for the entire state of California. If it's also 70% to 130%, then the last 3 years as shown in the map above should be considered normal.

 

 


Where have the graduates gone?

Someone submitted this chart on Twitter as an example of good dataviz.

Washingtonpost_aftercollege

The chart shows the surprising leverage colleges have on where students live after graduation.

The primary virtue of this chart is conservation of space. If our main line of inquiry is the destination states of college graduations - by state, then it's hard to beat this chart's efficiency at delivering this information. For each state, it's easy to see what proportion of graduates leave the state after graduation, and then within those who leave, the reader can learn which are the most popular destination states, and their relative importance.

The colors link the most popular destination states (e.g. Texas in orange) but they are not enough because the designer uses state labels also. A next set of states are labeled without being differentiated by color. In particular, New York and Massachusetts share shades of blue, which also is the dominant color on the left side.

***

The following is a draft of a concept I have in my head.

Junkcharts_redo_washpost_postgraddestinations_1

I imagine this to be a tile map. The underlying data are not public so I just copied down a bunch of interesting states. This view brings out the spatial information, as we expect graduates are moving to neighboring states (or the states with big cities).

The students in the Western states are more likely to stay in their own state, and if they move, they stay in the West Coast. The graduates in the Eastern states also tend to stay nearby, except for California.

I decided to use groups of color - blue for East, green for South, red for West. Color is a powerful device, if used well. If the reader wants to know which states send graduates to New York, I'm hoping the reader will see the chart this way:

Junkcharts_redo_washpost_postgraddestinations_2

 


Variance is a friend of dataviz

Seven years ago, I wrote a post about "invariance" in data visualization, which is something we should avoid (link). Yesterday, Business Insider published the following chart in an article about rising gas prices (link):

Businessinsider_gasprices_prices

The map shows the average prices at the pump in seven regions of the United States. 

This chart is succeeded by the following map:

Businessinsider_gasprices_pricechange

This second map shows the change in average gas prices in the same seven regions.

This design is invariant to the data! While the data change, the visualization looks identical. That's because the data are not encoded to any visual element - they are just printed as labels.

 


Superb tile map offering multiple avenues for exploration

Here's a beauty by WSJ Graphics:

Wsj_powerproduction

The article is here.

This data graphic illustrates the power of the visual medium. The underlying dataset is complex: power production by type of source by state by month by year. That's more than 90,000 numbers. They all reside on this graphic.

Readers amazingly make sense of all these numbers without much effort.

It starts with the summary chart on top.

Wsj_powerproduction_us_summary

The designer made decisions. The data are presented in relative terms, as proportion of total power production. Only the first and last years are labeled, thus drawing our attention to the long-term trend. The order of the color blocks is carefully selected so that the cleaner sources are listed at the top and the dirtier sources at the bottom. The order of the legend labels mirrors the color blocks in the area chart.

It takes only a few seconds to learn that U.S. power production has largely shifted away from coal with most of it substituted by natural gas. Other than wind, the green sources of power have not gained much ground during these years - in a relative sense.

This summary chart serves as a reading guide for the rest of the chart, which is a tile map of all fifty states. Embedded in the tile map is a small-multiples arrangement.

***

The map offers multiple avenues for exploration.

Some readers may look at specific states. For example, California.

Wsj_powerproduction_california

Currently, about half of the power production in California come from natural gas. Notably, there is no coal at all in any of these years. In addition to wind, solar energy has also gained. All of these insights come without the need for any labels or gridlines!

Wsj_powerproduction_westernstatesBrowsing around California, readers find different patterns in other Western states like Oregon and Washington.

Hydroelectric energy is the dominant source in those two states, with wind gradually taking share.

At this point, readers realize that the summary chart up top hides remarkable state-level variations.

***

There are other paths through the map.

Some readers may scan the whole map, seeking patterns that pop out.

One such pattern is the cluster of states that use coal. In most of these states, the proportion of coal has declined.

Yet another path exists for those interested in specific sources of power.

For example, the trend in nuclear power usage is easily followed by tracking the purple. South Carolina, Illinois and New Hampshire are three states that rely on nuclear for more than half of its power.

Wsj_powerproduction_vermontI wonder what happened in Vermont about 8 years ago.

The chart says they renounced nuclear energy. Here is some history. This one-time event caused a disruption in the time series, unique on the entire map.

***

This work is wonderful. Enjoy it!


To explain or to eliminate, that is the question

Today, I take a look at another project from Ray Vella's class at NYU.

Rich Get Richer Assigment 2 top

(The above image is a honeypot for "smart" algorithms that don't know how to handle image dimensions which don't fit their shadow "requirement". Human beings should proceed to the full image below.)

As explained in this post, the students visualized data about regional average incomes in a selection of countries. It turns out that remarkable differences persist in regional income disparity between countries, almost all of which are more advanced economies.

Rich Get Richer Assigment 2 Danielle Curran_1

The graphic is by Danielle Curran.

I noticed two smart decisions.

First, she came up with a different main metric for gauging regional disparity, landing on a metric that is simple to grasp.

Based on hints given on the chart, I surmised that Danielle computed the change in per-capita income in the richest and poorest regions separately for each country between 2000 and 2015. These regional income growth values are expressed in currency, not indiced. Then, she computed the ratio of these growth rates, for each country. The end result is a simple metric for each country that describes how fast income has been growing in the richest region relative to the poorest region.

One of the challenges of this dataset is the complex indexing scheme (discussed here). Carlos' solution keeps the indices but uses design to facilitate comparisons. Danielle avoids the indices altogether.

The reader is relieved of the need to make comparisons, and so can focus on differences in magnitude. We see clearly that regional disparity is by far the highest in the U.K.

***

The second smart decision Danielle made is organizing the countries into clusters. She took advantage of the horizontal axis which does not encode any data. The branching structure places different clusters of countries along the axis, making it simple to navigate. The locations of these clusters are cleverly aligned to the map below.

***

Danielle's effort is stronger on communications while Carlos' effort provides more information. The key is to understand who your readers are. What proportion of your readers would want to know the values for each country, each region and each year?

***

A couple of suggestions

a) The reference line should be set at 1, not 0, for a ratio scale. The value of 1 happens when the richest region and the poorest region have identical per-capita incomes.

b) The vertical scale should be fixed.


Illustrating coronavirus waves with moving images

The New York Times put out a master class in visualizing space and time data recently, in a visualization of five waves of Covid-19 that have torched the U.S. thus far (link).

Nyt_coronawaves_title

The project displays one dataset using three designs, which provides an opportunity to compare and contrast them.

***

The first design - above the headline - is an animated choropleth map. This is a straightforward presentation of space and time data. The level of cases in each county is indicated by color, dividing the country into 12 levels (plus unknown). Time is run forward. The time legend plays double duty as a line chart that shows the change in the weekly rate of reported cases over the course of the pandemic. A small piece of interactivity binds the legend with the map.

Nyt_coronawaves_moviefront

(To see a screen recording of the animation, click on the image above.)

***

The second design comprises six panels, snapshots that capture crucial "turning points" during the Covid-19 pandemic. The color of each county now encodes an average case rate (I hope they didn't just average the daily rates). 

Nyt_coronawaves_panelsix

The line-chart legend is gone -  it's not hard to see Winter > Fall 2020 > Summer/Fall 2021 >... so I don't think it's a big loss.

The small-multiples setup is particularly effective at facilitating comparisons: across time, and across space. It presents a story in pictures.

They may have left off 2020 following "Winter" because December to February spans both years but "Winter 2020" may do more benefit than harm here.

***

The third design is a series of short films, which stands mid-way between the single animated map and the six snapshots. Each movie covers a separate window of time.

This design does a better job telling the story within each time window while it obstructs comparisons across time windows.

Nyt_coronawaves_shortfilms

The informative legend is back. This time, it's showing the static time window for each map.

***

The three designs come from the same dataset. I think of them as one long movie, six snapshots, and five short films.

The one long movie is a like a data dump. It shows every number in the dataset, which is the weekly case rate for each county for a given week. All the data are streamed into a single map. It's a show piece.

As an instrument to help readers understand the patterns in the dataset, the movie falls short. Too much is going on, making it hard to focus and pick out key trends. When your eyes are everywhere, they are nowhere.

The six snapshots represent the other extreme. The graph does not move, as the time axis is reduced to six discrete time points. But this display describes the change points, and tells a story. The long movie, by contrast, invites readers to find a story.

Without motion, the small-multiples format allows us to pick out specific counties or regions and compare the case rates across time. This task is close to impossible in the long movie, as it requires freezing the movie, and jumping back and forth.

The five short films may be the best of both worlds. It retains the motion. If the time windows are chosen wisely, each short film contains a few simple patterns that can easily be discerned. For example, the third film shows how the winter wave emerged from the midwest and then walloped the whole country, spreading southward and toward the coasts.

Nyt_winterwave

(If the above gif doesn't play, click it.)

***

If there is double or triple the time allocated to this project, I'd want to explore spatial clustering. I'd like to dampen the spatial noise (neighboring counties that have slightly different experiences). There is also temporal noise (fluctuations from week to week for the same county) - which can be smoothed away. I think with these statistical techniques, the "wave" feature of the pandemic may be more visible.

 

 


Visualizing fertility rates around the globe

The following chart dropped on my Twitter feed.

Twitter_fertility_chart

It's an ambitious chart that tries to do a lot. The underlying data set contains fertility rate data from over 200 countries over 20 years.

The basic chart form is a column chart that is curled up into a ball. The column chart is given colors that map to continents. All countries are grouped into five continents. The column chart can only take a single data series, so the 2019 fertility rate is chosen.

Beyond this basic setup, the designer embellishes the chart with a trove of information. Here's a close up:

Twitter_fertilityrate_excerpt

The first number is the 2019 fertility rate, which means all the data encoded into the columns are also printed on the chart itself. Then, the flag of each country forms the next ring. Then, the name of the country. Finally, in brackets, the percent change in fertility rate between 2000 and 2019.

That is not all. Some contextual information are injected in those arrows that connect the columns to the data labels. A green arrow indicates that the fertility rate is trending lower - which is the case in most countries around the world. Once in a while, a purple arrow pops up. In the above excerpt, Seychelles gets a purple arrow because this island nation has increased the fertility rate from 2000 to 2019.

Also hiding in the background are several dashed rings. I think only the one that partially overlaps with the column chart contains any information - the other rings are inserted for an artistic reason. To decipher this dashed ring, we must look at the inset in the top left corner. We learn that the value of 2.1 children per woman is known as the replacement fertility rate. So it's also possible to assess whether each country is above or below the replacement fertility rate threshold.

Twitter_fertility_world_trend

[I'm presuming that this replacement threshold is about the births necessary to avoid a population decline. If that's the case, then comparing each country's fertility rate to a global fertility rate threshold is too simplistic because fertility is only one of several key factors driving a country's population growth. A more sophisticated model should generate country-level thresholds.]

***

Data graphics serve many functions. This chart works well as an embellished data table. It does take some time to find a specific country because the columns have been sorted by decreasing 2019 fertility rate but once we locate the column, all the other data fields are clearly laid out.

As a generator of data insights, this chart is less effective. The main insight I obtained from it is a rough ranking of continents, with African countries predominantly having higher fertility rates, followed by Asia and Oceania, then Americas, and finally, Europe which has the lowest fertility rates. If this is the key message, a standard choropleth map brings it out more directly.

***

Here is a small-multiples rendering of the fertility dataset. I chose 1999 values instead of 2000 to make a complete two-decade view.

Junkcharts_redofertilitychart_1

The columns represent a grouping of countries based on their 1999 fertility rates. The left column contains countries with the lowest number of births per woman, and the fertility rate increases left to right - both within an individual plot and in the grid.

If you're wondering, the hidden vertical axis sorts the countries by their 1999 rank. The lighter colors are 1999 values while the darker colors are 2019 values. For most countries the dots are shifting left over the 20 years. There are some exceptions. I have labeled several of these exceptions (e.g. Kazakhstan and Mongolia), and rendered them in italic.