This exercise plan for your lock-down work-out is inspired by Venn

A twitter follower did not appreciate this chart from Nature showing the collection of flu-like symptoms that people reported they have to an UK tracking app. 

Nature tracking app venn diagram

It's a super-complicated Venn diagram. I have written about this type of chart before (see here); it appears to be somewhat popular in the medicine/biology field.

A Venn diagram is not a data visualization because it doesn't plot the data.

Notice that the different compartments of the Venn diagram do not have data encoded in the areas. 

The chart also fails the self-sufficiency test because if you remove the data from it, you end up with a data container - like a world map showing country boundaries and no data.

If you're new here: if a graphic requires the entire dataset to be printed on it for comprehension, then the visual elements of the graphic are not doing any work. The graphic cannot stand on its own.

When the Venn diagram gets complicated, teeming with many compartments, there will be quite a few empty compartments. If I have to make this chart, I'd be nervous about leaving out a number or two by accident. An empty cell can be truly empty or an oversight.

Another trap is that the total doesn't add up. The numbers on this graphic add to 1,764 whereas the study population in the preprint was 1,702. Interestingly, this diagram doesn't show up in the research paper. Given how they winnowed down the study population from all the app downloads, I'm sure there is an innocent explanation as to why those two numbers don't match.

***

The chart also strains the reader. Take the number 18, right in the middle. What combination of symptoms did these 18 people experience? You have to figure out the layers sitting beneath the number. You see dark blue, light blue, orange. If you blink, you might miss the gray at the bottom. Then you have to flip your eyes up to the legend to map these colors to diarrhoea, shortness of breath, anosmia, and fatigue. Oops, I missed the yellow, which is the cough. To be sure, you look at the remaining categories to see where they stand - I've named all of them except fever. The number 18 lies outside fever so this compartment represents everything except fever. 

What's even sadder is there is not much gain from having done it once. Try to interpret the number 50 now. Maybe I'm just slow but it doesn't get better the second or third time around. This graphic not only requires work but painstaking work!

Perhaps a more likely question is how many people who had a loss of smell also had fever. Now it's pretty easy to locate the part of the dark gray oval that overlaps with the orange oval. But now, I have to add all those numbers, 69+17+23+50+17+46 = 222. That's not enough. Next, I must find the total of all the numbers inside the orange oval, which is 222 plus what is inside the orange and outside the dark gray. That turns out to be 829. So among those who had lost smell, the proportion who also had fever is 222/(222+829) = 21 percent. 

How many people had three or more symptoms? I'll let you figure this one out!

 

 

 

 

 

 

 


The hidden bad assumption behind most dual-axis time-series charts

[Note: As of Monday afternoon, Typepad is having problems rendering images. Please try again later if the charts are not loading properly.]

DC sent me the following chart over Twitter. It supposedly showcases one sector that has bucked the economic collapse, and has conversely been boosted by the stay-at-home orders around the world.

Covid19-pornhubtraffic


At first glance, I was drawn to the yellow line and the axis title on the right side. I understood the line to depict the growth rate in traffic "vs a normal day". The trend is clear as day. Since March 10 or so, the website has become more popular by the week.

For a moment, I thought the thin black line was a trendline that fits the rather ragged traffic growth data. But looking at the last few data points, I was afraid it was a glove that didn't fit. That's when I realized this is a dual-axis chart. The black line shows the worldwide total Covid-19 cases, with the axis shown on the left side.

As with any dual-axis charts, you can modify the relationship between the two scales to paint a different picture.

This next chart says that the site traffic growth lagged Covid-19 growth until around March 14.

Junkcharts_ph_dualaxis1

This one gives an ambiguous picture. One can't really say there is a strong correlation between the two time series.

Junkcharts_ph_dualaxis2

***

Now, let's look at the chart from the DATA corner of the Trifecta Checkup (link). The analyst selected definitions that are as far apart as possible. So this chart gives a good case study of the intricacy of data definitions.

First, notice the smoothness of the line of Covid-19 cases. This data series is naturally "smoothed" because it is an aggregate of country-level counts, which themselves are aggregates of regional counts.

By contrast, the line of traffic growth rates has not been smoothed. That's why we see sharp ups and downs. This series should be smoothed as well.

Junkcharts_ph_smoothedtrafficgrowth

The seven-day moving average line indicates a steady growth in traffic. The day-to-day fluctuations represent noise that distracts us from seeing the trendline.

Second, the Covid-19 series is a cumulative count, which means it's constantly heading upward over time (on rare days, it may go flat but never decrease). The traffic series represents change, is not cumulative, and so it can go up or down over time. To bring the data closer together, the Covid-19 series can be converted into new cases so they are change values.

Junkcharts_ph_smoothedcovidnewcases

Third, the traffic series are growth rates as percentages while the Covid-19 series are counts. It is possible to turn Covid-19 counts into growth rates as well. Like this:

Junkcharts_ph_smoothedcovidcasegrowth

By standardizing the units of measurement, both time series can be plotted on the same axis. Here is the new plot:

Redo_junkcharts_ph_trafficgrowthcasegrowth

Third, the two growth rates have different reference levels. The Covid-19 growth rate I computed is day-on-day growth. This is appropriate since we don't presume there is a seasonal effect - something like new cases on Mondays are typically larger than new cases on Tuesday doesn't seem plausible.

Thanks to this helpful explainer (link), I learned what the data analyst meant by a "normal day". The growth rate of traffic is not day-on-day change. It is the change in traffic relative to the average traffic in the last four weeks on the same day of week. If it's a Monday, the change in traffic is relative to the average traffic of the last four Mondays.

This type of seasonal adjustment is used if there is a strong day-of-week effect. For example, if the website reliably gets higher traffic during weekends than weekdays, then the Saturday traffic may always exceed the Friday traffic; instead of comparing Saturday to the day before, we index Saturday to the previous Saturday, Friday to the previous Friday, and then compare those two values.

***

Let's consider the last chart above, the one where I got rid of the dual axes.

A major problem with trying to establish correlation of two time series is time lag. Most charts like this makes a critical and unspoken assumption - that the effect of X on Y is immediate. This chart assumes that the higher the number Covid-19 cases, the more people stays home that day, the more people swarms the site that day. Said that way, you might see it's ridiculous.

What is true of any correlations in the wild - there is always some amount of time lag. It usually is hard to know how much lag.

***

Finally, the chart omitted a huge factor driving the growth in traffic. At various times dependent on the country, the website rolled out a free premium service offer. This is the primary reason for the spike around mid March. How much of the traffic growth is due to the popular marketing campaign, and how much is due to stay-at-home orders - that's the real question.


Make your color legend better with one simple rule

The pie chart about COVID-19 worries illustrates why we should follow a basic rule of constructing color legends: order the categories in the way you expect readers to encounter them.

Here is the chart that I discussed the other day, with the data removed since they are not of concern in this post. (link)

Junkcharts_abccovidbiggestworries_sufficiency

First look at the pie chart. Like me, you probably looked at the orange or the yellow slice first, then we move clockwise around the pie.

Notice that the legend leads with the red square ("Getting It"), which is likely the last item you'll see on the chart.

This is the same chart with the legend re-ordered:

Redo_junkcharts_abcbiggestcovidworries_legend

***

Simple charts can be made better if we follow basic rules of construction. When used frequently, these rules can be made silent. I cover rules for legends as well as many other rules in this Long Read article titled "The Unspoken Conventions of Data Visualization" (link).


When the visual runs away from the data

The pressure of the coronavirus news cycle has gotten the better of some graphics designers. Via Twitter, Mark B sent me the following chart:

Junkcharts_abccovidbiggestworries_sufficiency

I applied the self-sufficiency test to this pie chart. That's why you can't see the data which were also printed on the chart.

The idea of self-sufficiency is to test how much work the visual elements of the graphic are doing to convey its message. Look at the above chart, and guess the three values are.

Roughly speaking, all three answers are equally popular, with perhaps a little less than a third of respondents indicating "Getting It" as their biggest COVID-19 worry.

If measured, the slices represent 38%, 35% and 27%.

Now, here is the same chart with the data:

Abc_covidbiggestworries

Each number is way off! In addition, the three numbers sum to 178%.

Trifectacheckup_junkcharts_imageThis is an example of the Visual being at odds with the Data, using a Trifecta Checkup analysis. (Read about the Trifecta here.)

What the Visual is saying is not the same as what the data are saying. So the green arrow between D and V is broken.

***

This is a rather common mistake. This survey question apparently allows each respondent to select more than one answers. Whenever more than one responses are accepted, one cannot use a pie chart.

Here is a stacked bar chart that does right by the data.

Redo_junkcharts_abcbiggestcovidworries

 


The epidemic of simple comparisons

Another day, another Twitter user sent a sloppy chart featured on TV news. This CNN graphic comes from Hugo K. by way of Kevin T.

And it's another opportunity to apply the self-sufficiency test.

Junkcharts_cnncovidcases_sufficiency_1

Like before, I removed the data printed on the graphic. In reading this chart, we like to know the number of U.S. reported cases of coronavirus relative to China, and Italy relative to the U.S.

So, our eyes trace these invisible lines:

Junkcharts_cnncovidcases_sufficiency_2

U.S. cases are roughly two-thirds of China while Italian cases are 90% of U.S.

That's what the visual elements, the columns, are telling us. But it's fake news. Here is the chart with the data:

Cnn_covidcases

The counts of reported cases in all three countries were neck and neck around this time.

What this quick exercise shows is that anyone who correctly reads this chart is reading the data off the chart, and ignoring the contradictionary message sent by the relative column heights. Thus, the visual elements are not self-sufficient in conveying the message.

***

In a Trifecta Checkup, I'd be most concerned about the D corner. The naive comparison of these case counts is an epidemic of its own. It sometimes leads to poor decisions that can exacerbate the public-health problems. See this post on my sister blog.

The difference in case counts between different countries (or regions or cities or locales) is not a direct measure of the difference in coronavirus spread in these places! This is because there are many often-unobserved factors that will explain most if not all of the differences.

After a lot of work by epidemiologists, medical researchers, statisticians and the likes, we now realize that different places conduct different numbers of tests. No test, no positive. The U.S. has been slow to get testing ramped up.

Less understood is the effect of testing selection. Consider the U.S. where it is still hard to get tested. Only those who meet a list of criteria are eligible. Imagine an alternative reality in which the U.S. conducted the same number of tests but instead of selecting most likely infected people to be tested, we test a random sample of people. The incidence of the virus in a random sample is much lower than in the severely infected, therefore, in this new reality, the number of positives would be lower despite equal numbers of tests.

That's for equal number of tests. If test kits are readily available, then a targeted (triage) testing strategy will under-count cases since mild cases or asymptomatic infections escape attention. (See my Wired column for problems with triage.)

To complicate things even more, in most countries, the number of tests and the testing selection have changed over time so a cumulative count statistic obscures those differences.

Beside testing, there are a host of other factors that affect reported case counts. These are less talked about now but eventually will be.

Different places have different population densities. A lot of cases in a big city and an equal number of cases in a small town do not signify equal severity.  Clearly, the situation in the latter is more serious.

Because the virus affects age groups differently, a direct comparison of the case counts without adjusting for age is also misleading. The number of deaths of 80-year-olds in a college town is low not because the chance of dying from COVID-19 is lower there than in a retirement community; it's low because 80-year-olds are a small proportion of the population.

Next, the cumulative counts ignore which stage of the "epi curve" these countries are at. The following chart can replace most of the charts you're inundated with by the media:

Epicurve_coronavirus

(I found the chart here.)

An epi curve traces the time line of a disease outbreak. Every location is expected to move through stages, with cases reaching a peak and eventually the number of newly recovered will exceed the number of newly infected.

Notice that China, Italy and the US occupy different stages of this curve.  It's proper to compare U.S. to China and Italy when they were at a similar early phase of their respective epi curve.

In addition, any cross-location comparison should account for how reliable the data sources are, and the different definitions of a "case" in different locations.

***

Finally, let's consider the Question posed by the graphic designer. It is the morbid question: which country is hit the worst by coronavirus?

This is a Type DV chart. It's got a reasonable question, but the data require a lot more work to adjust for the list of biases. The visual design is hampered by the common mistake of not starting columns at zero.

 


More visuals of the economic crisis

As we move into the next phase of the dataviz bonanza arising from the coronavirus pandemic, we will see a shift from simple descriptive graphics of infections and deaths to bivariate explanatory graphics claiming (usually spurious) correlations.

The FT is leading the way with this effort, and I hope all those who follow will make a note of several wise decisions they made.

  • They source their data. Most of the data about business activities come from private entities, many of which are data vendors who make money selling the data. In this article, FT got restaurant data from OpenTable, retail foot traffic data from Springboard, box office data from Box Office Mojo, flight data from Flightradar24, road traffic data from TomTom, and energy use data from European Network of Transmission System Operators for Electricity.
  • They generally let the data and charts speak without "story time". The text primarily describes the trends of the various data series.
  • They selected sectors that are obviously impacted by the shutdowns so any link between the observed trends and the crisis is plausible.

The FT charts are examples of clarity. Here is the one about road traffic patterns in major cities:

Ft_roadusage_corona_wrongsource

The cities are organized into regions: Europe, US, China, other Asia.

The key comparison is the last seven days versus the historical averages. The stories practically jump out of the page. Traffic in Paris collapsed on Tuesday. Wuhan is still locked down despite the falloff in infections. Drivers of Tokyo are probably wondering why teams are not going to the Olympics this year. Londoners? My guess is they're determined to not let another Brexit deadline slip.

***

I'd hope we go even further than FT when publishing this type of visual analytics involving "Big Data." These business data obtained from private sources typically have OCCAM properties: they are observational, seemingly complete, uncontrolled, adapted and merged. All these properties make the data very challenging to interpret.

The coronavirus case and death counts are simple by comparison. People are now aware of all the problems from differential rates of testing to which groups are selectively tested (i.e. triage) to how an infection or death is defined. The problems involving Big Data are much more complex.

I have three additional proposals:

Disclosure of Biases and Limitations

The private data have many more potential pitfalls. Take OpenTable data for example. The data measure restaurant bookings, not revenues. It measures gross bookings, not net bookings (i.e. removing no-shows). Only a proportion of restaurants use OpenTable (which cost owners money). OpenTable does not strike me as a quasi-monopoly so there are competitors with significant market share. The restaurants that use OpenTable do not form a random subsample of all restaurants. One of the most popular restaurants in the U.S. are pizza joints, with little of no seating, which do not feature in the bookings data. OpenTable also has differential popularity by country, region, or probably cuisine. 

I believe data journalists ought to provide such context in a footnote. Readers should have the information to judge whether they believe the data are sufficiently representative. Private data vendors who want data journalists to feature their datasets should be required to supply a footnote that describes the biases and limitations of their data.

Data journalists should think seriously about how they headline this type of chart. The standard practice is what FT adopted. The headline said "Restaurant bookings have collapsed" with a small footnote saying "Source: OpenTable". Should the headline have said "OpenTable bookings have collapsed" instead?

Disclosure of Definitions and Proxies

In the road traffic chart shown above, the metric is called "TomTom traffic congestion index". In order to earn this free advertising (euphemistically called "earned media" by industry), TomTom should be obliged to explain how this index is constructed. What does index = 100 mean?

[For example, it is curious that the Madrid index values are much lower across the board than those in Paris and Roma.]

For the electric usage chart, FT discloses the name of the data provider as a group of "43 electricity transmission system operators in 36 countries across Europe." Now, that is important context but can be better. The group may consist of 43 operators but how many of them are in the dataset? What proportion of the total electric usage do they account for in each country? If they have low penetration in a particular country, do they just report the low statistics or adjust the numbres?

If the journalist decides to use a proxy, for example, OpenTable restaurant bookings to reflect restaurant revenues, that should be explained, perhaps even justified.

Data as a Public Good

If private businesses choose to supply data to media outlets as a public service, they should allow the underlying data to be published.

Speaking from experience, I've seen a lot of bad data. It's one thing to hold your nose when the data are analyzed to make online advertising more profitable, or to find signals to profit from the stock market. It's another thing for the data analysis to drive public policy, in this case, policies that will have life-or-death implications.


Graphing the economic crisis of Covid-19

My friend Ray Vella at The Conference Board has a few charts up on their coronavirus website. TCB is a trusted advisor and consultant to large businesses and thus is a good place to learn how the business community is thinking about this crisis.

I particularly like the following chart:

Tcb_stockmarketindices_fourcrises

This puts the turmoil in the stock market in perspective. We are roughly tracking the decline of the Great Recession of the late 2000s. It's interesting that 9/11 caused very mild gyrations in the S&P index compared to any of the other events. 

The chart uses an index with value 100 at Day 0. Day 0 is defined by the trigger event for each crisis. About three weeks into the current crisis, the S&P has lost over 30% of its value.

The device of a gray background for the bottom half of the chart is surprisingly effective.

***

Here is a chart showing the impact of the Covid-19 crisis on different sectors.

Tcb-COVID-19-manual-services-1170

So the full-service restaurant industry is a huge employer. Restaurants employ 7-8 times more people than airlines. Airlines employ about the same numbers of people as "beverage bars" (which I suppose is the same as "bars" which apparently is different from "drinking places"). Bars employ 7 times more people than "Cafeterias, etc.".

The chart describes where the jobs are, and which sectors they believe will be most impacted. It's not clear yet how deeply these will be impacted. Being in NYC, the complete shutdown is going to impact 100% of these jobs in certain sectors like bars, restaurants and coffee shops.


Proportions and rates: we are no dupes

Reader Lucia G. sent me this chart, from Ars Technica's FAQ about the coronavirus:

Arstechnica_covid-19-2.001-1280x960

She notices something wrong with the axis.

The designer took the advice not to make a dual axis, but didn't realize that the two metrics are not measured on the same scale even though both are expressed as percentages.

The blue bars, labeled "cases", is a distribution of cases by age group. The sum of the blue bars should be 100 percent.

The orange bars show fatality rates by age group. Each orange bar's rate is based on the number of cases in that age group. The sum of the orange bars will not add to 100 percent.

In general, the rates will have much lower values than the proportions. At least that should be the case for viruses that are not extremely fatal.

This is what the 80 and over section looks like.

Screen Shot 2020-03-12 at 1.19.46 AM

It is true that fatality rate (orange) is particularly high for the elderly while this age group accounts for less than 5 percent of total cases (blue). However, the cases that are fatal, which inhabit the orange bar, must be a subset of the total cases for 80 and over, which are shown in the blue bar. Conceptually, the orange bar should be contained inside the blue bar. So, it's counter-intuitive that the blue bar is so much shorter than the orange bar.

The following chart fixes this issue. It reveals the structure of the data, Total cases are separated by age group, then within each age group, a proportion of the cases are fatal.

Junkcharts_redo_arstechnicacovid19

This chart also shows that most patients recover in every age group. (This is only approximately true as some of the cases may not have been discharged yet.)

***

This confusion of rates and proportions reminds me of something about exit polls I just wrote about the other day on the sister blog.

When the media make statements about trends in voter turnout rate in the primary elections, e.g. when they assert that youth turnout has not increased, their evidence is from exit polls, which can measure only the distribution of voters by age group. Exit polls do not and cannot measure the turnout rate, which is the proportion of registered (or eligible) voters in the specific age group who voted.

Like the coronavirus data, the scales of these two metrics are different even though they are both percentages: the turnout rate is typically a number between 30 and 70 percent, and summing the rates across all age groups will exceed 100 percent many times over. Summing the proportions of voters across all age groups should be 100 percent, and no more.

Changes in the proportion of voters aged 18-29 and changes in the turnout rate of people aged 18-29 are not the same thing. The former is affected by the turnout of all age groups while the latter is a clean metric affected only by 18 to 29-years-old.

Basically, ignore pundits who use exit polls to comment on turnout trends. No matter how many times they repeat their nonsense, proportions and rates are not to be confused. Which means, ignore comments on turnout trends because the only data they've got come from exit polls which don't measure rates.

 

P.S. Here is some further explanation of my chart, as a response to a question from Enrico B. on Twitter.

The chart can be thought of as two distributions, one for cases (gray) and one for deaths (red). Like this:

Junkcharts_redo_arstechnicacoronavirus_2

The side-by-side version removes the direct visualization of the fatality rate within each age group. To understand fatality rate requires someone to do math in their head. Readers can qualitatively assess that for the 80 and over, they accounted for 3 percent of cases but also about 21 percent of deaths. People aged 70 to 79 however accounted for 9 percent of cases but 30 percent of deaths, etc.

What I did was to scale the distribution of deaths so that they can be compared to the cases. It's like fitting the red distribution inside the gray distribution. Within each age group, the proportion of red against the length of the bar is the fatality rate.

For every 100 cases regardless of age, 3 cases are for people aged 80 and over within which 0.5 are fatal (red).

So, the axis labels are correct. The values are proportions of total cases, although as the designer of the chart, I hope people are paying attention more to the proportion of red, as opposed to the units.

What might strike people as odd is that the biggest red bar does not appear against 80 and above. We might believe it's deadlier the older you are. That's because on an absolute scale, more people aged 70-79 died than those 80 and above. The absolute deaths is the product of the proportion of cases and the fatality rate. That's really a different story from the usual plot of fatality rates by age group. In those charts, we "control" for the prevalence of cases. If every age group were infected in the same frequency, then COVID-19 does kill more 80 and over.

 

 

 


Comparing chance of death of coronavirus and flu

The COVID-19 charts are proving one thing. When the topic of a dataviz is timely and impactful, readers will study the graphics and ask questions. I've been sent some of these charts lately, and will be featuring them here.

A former student saw this chart from Business Insider (link) and didn't like it.

Businesinsider_coronavirus_flu_compare

My initial reaction was generally positive. It's clear the chart addresses a comparison between death rates of the flu and COVID19, an important current question. The side-by-side panel is effective at allowing such a comparison. The column charts look decent, and there aren't excessive gridlines.

Sure, one sees a few simple design fixes, like removing the vertical axis altogether (since the entire dataset has already been printed). I'd also un-slant the age labels.

***

I'd like to discuss some subtler improvements.

A primary challenge is dealing with the different definitions of age groups across the two datasets. While the side-by-side column charts prompt readers to go left-right, right-left in comparing death rates, it's not easy to identify which column to compare to which. This is not fixable in the datasets because the organizations that compile them define their own age groups.

Also, I prefer to superimpose the death rates on the same chart, using something like a dot plot rather than a column chart. This makes the comparison even easier.

Here is a revised visualization:

Redo_businessinsider_covid19fatalitybyage

The contents of this chart raise several challenges to public health officials. Clearly, hospital resources should be preferentially offered to older patients. But young people could be spreading the virus among the community.

Caution is advised as the data for COVID19 suffers from many types of inaccuracies, as outlined here.


How to read this chart about coronavirus risk

In my just-published Long Read article at DataJournalism.com, I touched upon the subject of "How to Read this Chart".

Most data graphics do not come with directions of use because dataviz designers follow certain conventions. We do not need to tell you, for example, that time runs left to right on the horizontal axis (substitute right to left for those living in right-to-left countries). It's when we deviate from the norms that calls for a "How to Read this Chart" box.

***
A discussion over Twitter during the weekend on the following New York Times chart perfectly illustrates this issue. (The article is well worth reading to educate oneself on this red-hot public-health issue. I made some comments on the sister blog about the data a few days ago.)

Nyt_coronavirus_scatter

Reading this chart, I quickly grasp that the horizontal axis is the speed of infection and the vertical axis represents the deadliness. Without being told, I used the axis labels (and some of you might notice the annotations with the arrows on the top right.) But most people will likely miss - at a glance - that the vertical axis utilizes a log scale while the horizontal axis is linear (regular).

The effect of a log scale is to pull the large numbers toward the average while spreading the smaller numbers apart - when compared to a linear scale. So when we look at the top of the coronavirus box, it appears that this virus could be as deadly as SARS.

The height of the pink box is 3.9, while the gap between the top edge of the box and the SARS dot is 6. Yet our eyes tell us the top edge is closer to the SARS dot than it is to the bottom edge!

There is nothing inaccurate about this chart - the log scale introduces such distortion. The designer has to make a choice.

Indeed, there were two camps on Twitter, arguing for and against the log scale.

***

I use log scales a lot in analyzing data, but tend not to use log scales in a graph. It's almost a given that using the log scale requires a "How to Read this Chart" message. And the NY Times crew delivers!

Right below the chart is a paragraph:

Nyt_coronavirus_howtoreadthis

To make this even more interesting, the horizontal axis is a hidden "log" scale. That's because infections spread exponentially. Even though the scale is not labeled "log", think as if the large values have been pulled toward the middle.

Here is an over-simplified way to see this. A disease that spreads at a rate of fifteen people at a time is not 3 times worse than one that spreads five at a time. In the former case, the first sick person transmits it to 15, and then each of the 15 transmits the flu to 15 others, thus after two steps, 241 people have been infected (225 + 15 + 1). In latter case, it's 5x5 + 5 + 1 = 31 infections after two steps. So at this point, the number of infected is already 8 times worse, not 3 times. And the gap keeps widening with each step.

P.S. See also my post on the sister blog that digs deeper into the metrics.