How many details to include in a chart

This graphic by Bloomberg provides the context for understanding the severity of the Atlantic storm season. (link)

Bloomberg_2020storms_vertical

At this point of the season, 2020 appears to be one of the most severe in history.

I was momentarily fascinated by a feature of modern browser-based data visualization: the death of the aspect ratio. When the browser window is stretched sufficiently wide, the chart above is transformed to this look:

Bloomberg_2020storms_horizontal

The chart designer has lost control of the aspect ratio.

***

This Bloomberg chart is an example of the spaghetti-style plots that convey variability by displaying individual units of data (here, storm years). The envelope of the growth curves gives the range of historical counts while the density of curves roughly offers some sense of the most likely counts at different points of the season.

But these spaghetti-style plots are not precise at conveying the variability because the density is hard to gauge. That's where aggregating the individual units helps.

The following chart does not show individual storm years. It shows the counts for the median season at selected points in time, and also a band of variability (for example, you'd include say 90 or 95% of the seasons).

Redo_bloomberg_2020storms

I don't have the raw data so the aggregating is done by eyeballing the spaghetti.

I prefer this presentation even though it does not plot every single data point one has in the dataset.

 

 


On data volume, reliability, uncertainty and confidence bands

This chart from the Economist caught my eye because of the unusual use of color-coded hexagonal tiles.

Economist_lifequalitywealth1

The basic design of the chart is easy to grasp: It relates people's "happiness" to national wealth. The thick black line shows that the average citizen of wealthier countries tends to rate their current life situation better.

For readers alert to graphical details, things can get a little confusing. The horizontal "wealth" axis is shown in log scale, which means that the data on the right side of the chart have been compressed while the data on the left side of the chart have been stretched out. In other words, the curve in linear scale is much flatter than depicted.

Redo_economistlifesatisfaction_linear

One thing you might notice is how poor the fit of the line is at both ends. Singapore and Afghanistan are clearly not explained by the fitted line. (That said, the line is based on many more dots than those eight we can see.) Moreover, because countries are widely spread out on the high end of the wealth axis, the fit is not impressive. Log scales tend to give a false impression of the tightness of fit, as I explained before when discussing coronavirus case curves.

***

The hexagonal tiles replace the more typical dot scatter or contour shading. The raw data consist of results from polls conducted in different countries in different years. For each poll, the analyst computes the average life satisfaction score for that country in that year. From national statistics, the analyst pulls out that country's GDP per capita in that year. Thus, each data point is a dot on the canvass. A few data points are shown as black dots. Those are for eight highlighted countries for the year 2018.

The black line is fitted to the underlying dot scatter and summarizes the correlation between average wealth and average life satisfaction. Instead of showing the scatter, this Economist design aggregates nearby dots into hexagons. The deepest red hexagon, sandwiched between Finland and the US, contains about 60-70 dots, according to the color legend.

These details are tough to take in. It's not clear which dots have been collected into that hexagon: are they all Finland or the U.S. in various years, or do they include other countries? Each country is represented by multiple dots, one for each poll year. It's also not clear how much variation there exists within a country across years.

***

The hexagonal tiles presumably serve the same role as a dot scatter or contour shading. They convey the amount of data supporting the fitted curve along its trajectory. More data confers more reliability.

For this chart, the hexagonal tiles do not add any value. The deepest red regions are those closest to the black line so nothing is actually lost by showing just the line and not the tiles.

Redo_economistlifesatisfaction_nohex

Using the line chart obviates the need for readers to figure out the hexagons, the polls, the aggregation, and the inevitable unanswered questions.

***

An alternative concept is to show the "confidence band" or "error bar" around the black line. These bars display the uncertainty of the data. The wider the band, the less certain the analyst is of the estimate. Typically, the band expands near the edges where we have less data.

Here is conceptually what we should see (I don't have the underlying dataset so can't compute the confidence band precisely)

Redo_economistlifesatisfaction_confband

The confidence band picture is the mirror image of the hexagonal tiles. Where the poll density is high, the confidence band narrows, and where poll density is low, the band expands.

A simple way to interpret the confidence band is to find the country's wealth on the horizontal axis, and look at the range of life satisfaction rating for that value of wealth. Now pick any number between the range, and imagine that you've just conducted a survey and computed the average rating. That number you picked is a possible survey result, and thus a valid value. (For those who know some probability, you should pick a number not at random within the range but in accordance with a Bell curve, meaning picking a number closer to the fitted line with much higher probability than a number at either edge.)

Visualizing data involves a series of choices. For this dataset, one such choice is displaying data density or uncertainty or neither.


Working with multiple dimensions, an example from Germany

An anonymous reader submitted this mirrored bar chart about violent acts by extremists in the 16 German states.

Germanextremists_bars

At first glance, this looks like a standard design. On a second look, you might notice what the reader discovered- the chart used two different scales, one for each side. The left side (red) depicting left-wing extremism is artificially compressed relative to the right side (blue). Not sure if this reflects the political bias of the publication - but in any case, this distortion means the only way to consume this chart is to read the numbers.

Even after fixing the scales, this design is challenging for the reader. It's unnatural to compare two years by looking first below then above. It's not simple to compare across states, and even harder to compare left- and right-wing extremism (due to mirroring).

The chart feels busy because the entire dataset is printed on it. I appreciate not including a redundant horizontal axis. (I wonder if the designer first removed the axis, then edited the scale on one side, not realizing the distortion.) Another nice touch, hidden in the legend, is the country totals.

I present two alternatives.

The first is a small-multiples "bumps chart".

Redo_junkcharts_germanextremists_sidebysidelines

Each plot presents the entire picture within a state. You can see the general level of violence, the level of left- and right-wing extremism, and their year-on-year change. States can be compared holistically.

Several German state names are rather long, so I explored a horizontal orientation. In this case, a connected dot plot may be more appropriate.

Redo_junkcharts_germanextremists_dots

The sign of a good multi-dimensional visual display is whether readers can easily learn complex relationships. Depending on the question of interest, the reader can mentally elevate parts of this chart. One can compare the set of blue arrows to the set of red arrows, or focus on just blue arrows pointing right, or red arrows pointing left, or all arrows for Berlin, etc.

 

[P.S. Anonymous reader said the original chart came from the Augsburger newspaper. This link in German contains more information.]


Cornell must remove the logs before it reopens the campus in the fall

Against all logic, Cornell announced last week it would re-open in the fall because a mathematical model under development by several faculty members and grad students predicts that a "full re-opening" would lead to 80 percent fewer infections than a scenario of full virtual instruction. That's what was reported by the media.

The model is complicated, with loads of assumptions, and the report is over 50 pages long. I will put up my notes on how they attained this counterintuitive result in the next few days. The bottom line is - and the research team would agree - it is misleading to describe the analysis as "full re-open" versus "no re-open". The so-called full re-open scenario assumes the entire community including students, faculty and staff submit to a full program of test-trace-isolate, including (mandatory) PCR diagnostic testing once every five days throughout the 16-week semester, and immediate quarantine and isolation of new positive cases, as well as those in contact with such persons, plus full compliance with this program. By contrast, it assumes students do not get tested in the online instruction scenario. In other words, the researchers expect Cornell to get done what the U.S. governments at all levels failed to do until now.

[7/8/2020: The post on the Cornell model is now up on the book blog. Here.]

The report takes us back to the good old days of best-base-worst-case analysis. There is no data for validating such predictions so they performed sensitivity analyses, defined as changing one factor at a time assuming all other factors are fixed at "nominal" (i.e. base case) values. In a large section of the report, they publish a series of charts of the following style:

Cornell_reopen_sensitivity

Each line here represents one of the best-base-worst cases (respectively, orange-blue-green). Every parameter except one is given the "nominal" value (which represents the base case). The parameter that is manpulated is shown on the horizontal axis, and for the above chart, the variable is the assumption of average number of daily contacts per person. The vertical axis shows the main outcome variable, which is the percentage of the community infected by the end of term.

This flatness of the lines in the above chart appears to say that the outcome is quite insensitive to the change in the average daily contact rate under all three scenarios - until the daily contact rises above 10 per person per day. It also appears to show that the blue line is roughly midway between the orange and the green so the percent infected is slightly less-than halved under the optimistic scenario, and a bit more than doubled under the pessimistic scenario, relative to the blue line.

Look again.

The vertical axis is presented in log scale, and only labeled at values 1% and 10%. About midway between 1 and 10 on the horizontal axis, the outcome value has already risen above 10%. Because of the log transformation, above 10%, each tick represents an increase of 10% in proportion. So, the top of the vertical axis indicates 80% of the community being infected! Nothing in the description or labeling of the vertical axis prepares the reader for this.

The report assumes a fixed value for average daily contacts of 8 (I rounded the number for discussion), which is invariable across all three scenarios. Drawing a vertical line about eight-tenths of the way towards 10 appears to signal that this baseline daily contact rate places the outcome in the relatively flat part of the curve.

Look again.

The horizontal axis too is presented in log scale. To birth one log-scale may be regarded as a misfortune; to birth two log scales looks like carelessness. 

Since there exists exactly one tick beyond 10 on the horizontal axis, the right-most value is 20. The model has been run for values of average daily contacts from 1 to 20, with unit increases. I can think of no defensible reason why such a set of numbers should be expressed in a log scale.

For the vertical axis, the outcome is a proportion, which is confined to within 0 percent and 100 percent. It's not a number that can explode.

***

Every log scale on a chart is birthed by its designer. I know of no software that automatically performs log transforms on data without the user's direction. (I write this line with trepidation wishing that I haven't planted a bad idea in some software developer's head.)

Here is what the shape of the original data looks like - without any transformation. All software (I'm using JMP here) produces something of this type:

Redo-cornellreopen-nolog

At the baseline daily contact rate value of 8, the model predicts that 3.5% of the Cornell community will get infected by the end of the semester (again, assuming strict test-trace-isolate fully implemented and complied).  Under the pessimistic scenario, the proportion jumps to 14%, which is 4 or 5 times higher than the base case. In this worst-case scenario, if the daily contact rate were about twice the assumed value (just over 16), half of the community would be infected in 16 weeks!

I actually do not understand how there could only be 8 contacts per person per day when the entire student body has returned to 100% in-person instruction. (In the report, they even say the 8 contacts could include multiple contacts with the same person.) I imagine an undergrad student in a single classroom with 50 students. This assumption says the average student in this class only comes into contact with at most 8 of those. That's one class. How about other classes? small tutorials? dining halls? dorms? extracurricular activities? sports? parties? bars?

Back to graphics. Something about the canonical chart irked the report writers so they decided to try a log scale. Here is the same chart with the vertical axis in log scale:

Redo-cornellreopen-logy

The log transform produces a visual distortion. On the right side, where the three lines are diverging rapidly, the log transform pulls them together. On the left side, where the three lines are close together, the log transform pulls them apart.

Recall that on the log scale, a straight line is exponential growth. Look at the green line (worst case). That line is approximately linear so in the pessimistic scenario, despite assuming full compliance to a strict test-trace-isolate regimen, the cases are projected to grow exponentially.

Something about that last chart still irked the report writers so they decided to birth a second log scale. Here is the chart they ultimately settled on:

Redo-cornellreopen-logylogx

As with the other axis, the effect of the log transform is to squeeze the larger values (on the right side) and spread out the smaller values (on the left side). After this cosmetic surgery, the left side looks relatively flat while the right side looks steep.

In the next version of the Cornell report, they should replace all these charts with ones using linear scales.

***

Upon discovering this graphical mischief, I wonder if the research team received a mandate that includes a desired outcome.

 

[P.S. 7/8/2020. For more on the Cornell model, see this post.]


Presented without comment

Weekend assignment - which of these tells the story better?

Ourworldindata_cases_log

Or:

Ourworldindata_cases_linear

The cop-out answer is to say both. If you must pick one, which one?

***

When designing a data visualization as a living product (not static), you'd want a design that adapts as the data change.


When the pie chart is more complex than the data

The trading house, Charles Schwab, included the following graphic in a recent article:

Charleschwab_portfolio_1000

This graphic is more complicated than the story that it illustrates. The author describes a simple scenario in which an investor divides his investments into stocks, bonds and cash. After a stock crash, the value of the portfolio declines.

The graphic is a 3-D pie chart, in which the data are encoded twice, first in the areas of the sectors and then in the heights of the part-cylinders.

As readers, we perceive the relative volumes of the part-cylinders. Volume is the cross-sectional area (i.e. of the base) multipled by the height. Since each component holds the data, the volumes are proportional to the squares of the data.

Here is a different view of the same data:

Redo_junkcharts_schwab_portfolio

This "bumps chart" (also called a slopegraph) shows clearly the only thing that drives the change is the drop in stock prices. Because the author assumes no change in bonds or cash, the drop in the entire portfolio is completely accounted for by the decline in stocks. Of course, this scenario seems patently unrealistic - different investment asset classes tend to be correlated.

***

A cardinal rule of data visualization is that the visual should be less complex than the data.


What is the price for objectivity

I knew I had to remake this chart.

TMC_hospitalizations

The simple message of this chart is hidden behind layers of visual complexity. What the analyst wants readers to focus on (as discerned from the text on the right) is the red line, the seven-day moving average of new hospital admissions due to Covid-19 in Texas.

My eyes kept wandering away from the line. It's the sideway data labels on the columns. It's the columns that take up vastly more space than the red line. It's the sideway date labels on the horizontal axis. It's the redundant axis labels for hospitalizations when the entire data set has already been printed. It's the two hanging diamonds, for which the clues are filed away in the legend above.

Here's a version that brings out the message: after Phase 2 re-opening, the number of hospital admissions has been rising steadily.

Redo_junkcharts_texas_covidhospitaladmissions_1

Dots are used in place of columns, which push these details to the background. The line as well as periods of re-opening are directly labeled, removing the need for a legend.

Here's another visualization:

Redo_junkcharts_texas_covidhospitaladmissions_2

This chart plots the weekly average new hospital admissions, instead of the seven-day moving average. In the previous chart, the raggedness of moving average isn't transmitting any useful information to the average reader. I believe this weekly average metric is easier to grasp for many readers while retaining the general story.

***

On the original chart by TMC, the author said "the daily hospitalization trend shows an objective view of how COVID-19 impacts hospital systems." Objectivity is an impossible standard for any kind of data analysis or visualization. As seen above, the two metrics for measuring the trend in hospitalizations have pros and cons. Even if one insists on using a moving average, there are choices of averaging methods and window sizes.

Scientists are trained to believe in objectivity. It frequently disappoints when we discover that the rest of the world harbors no such notion. If you observe debates between politicians or businesspeople or social scientists, you rarely hear anyone claim one analysis is more objective - or less subjective - than another. The economist who predicts Dow to reach a new record, the business manager who argues for placing discounted products in the front not the back of the store, the sportscaster who maintains Messi is a better player than Ronaldo: do you ever hear these people describe their methods as objective?

Pursuing objectivity leads to the glorification of data dumps. The scientist proclaims disinterest in holding an opinion about the data. This is self-deception though. We clearly have opinions because when someone else  "misinterprets" the data, we express dismay. What is the point of pretending to hold no opinions when most of the world trades in opinions? By being "objective," we never shape the conversation, and forever play defense.


Designs of two variables: map, dot plot, line chart, table

The New York Times found evidence that the richest segments of New Yorkers, presumably those with second or multiple homes, have exited the Big Apple during the early months of the pandemic. The article (link) is amply assisted by a variety of data graphics.

The first few charts represent different attempts to express the headline message. Their appearance in the same article allows us to assess the relative merits of different chart forms.

First up is the always-popular map.

Nytimes_newyorkersleft_overallmap

The advantage of a map is its ease of comprehension. We can immediately see which neighborhoods experienced the greater exoduses. Clearly, Manhattan has cleared out a lot more than outer boroughs.

The limitation of the map is also in view. With the color gradient dedicated to the proportions of residents gone on May 1st, there isn't room to express which neighborhoods are richer. We have to rely on outside knowledge to make the correlation ourselves.

The second attempt is a dot plot.

Nytimes_newyorksleft_percentathome

We may have to take a moment to digest the horizontal axis. It's not time moving left to right but income percentiles. The poorest neighborhoods are to the left and the richest to the right. I'm assuming that these percentiles describe the distribution of median incomes in neighborhoods. Typically, when we see income percentiles, they are based on households, regardless of neighborhoods. (The former are equal-sized segments, unlike the latter.)

This data graphic has the reverse features of the map. It does a great job correlating the drop in proportion of residents at home with the income distribution but it does not convey any spatial information. The message is clear: The residents in the top 10% of New York neighborhoods are much more likely to have left town.

In the following chart, I attempted a different labeling of both axes. It cuts out the need for readers to reverse being home to not being home, and 90th percentile to top 10%.

Redo_nyt_newyorkerslefttown

The third attempt to convey the income--exit relationship is the most successful in my mind. This is a line chart, with time on the horizontal axis.

Nyt_newyorkersleft_percenthomebyincome

The addition of lines relegates the dots to the background. The lines show the trend more clearly. If directly translated from the dot plot, this line chart should have 100 lines, one for each percentile. However, the closeness of the top two lines suggests that no meaningful difference in behavior exists between the 20th and 80th percentiles. This can be conveyed to readers through a short note. Instead of displaying all 100 percentiles, the line chart selectively includes only the 99th , 95th, 90th, 80th and 20th percentiles. This is a design choice that adds by subtraction.

Along the time axis, the line chart provides more granularity than either the map or the dot plot. The exit occurred roughly over the last two weeks of March and the first week of April. The start coincided with New York's stay-at-home advisory.

This third chart is a statistical graphic. It does not bring out the raw data but features aggregated and smoothed data designed to reveal a key message.

I encourage you to also study the annotated table later in the article. It shows the power of a well-designed table.

[P.S. 6/4/2020. On the book blog, I have just published a post about the underlying surveillance data for this type of analysis.]

 

 


Consumption patterns during the pandemic

The impact of Covid-19 on the economy is sharp and sudden, which makes for some dramatic data visualization. I enjoy reading the set of charts showing consumer spending in different categories in the U.S., courtesy of Visual Capitalist.

The designer did a nice job cleaning up the data and building a sequential story line. The spending are grouped by categories such as restaurants and travel, and then sub-categories such as fast food and fine dining.

Spending is presented as year-on-year change, smoothed.

Here is the chart for the General Commerce category:

Visualcapitalist_spending_generalcommerce

The visual design is clean and efficient. Even too sparse because one has to keep returning to the top to decipher the key events labelled 1, 2, 3, 4. Also, to find out that the percentages express year-on-year change, the reader must scroll to the bottom, and locate a footnote.

As you move down the page, you will surely make a stop at the Food Delivery category, noting that the routine is broken.

Visualcapitalist_spending_fooddelivery

I've featured this device - an element of surprise - before. Remember this Quartz chart that depicts drinking around the world (link).

The rule for small multiples is to keep the visual design identical but vary the data from chart to chart. Here, the exceptional data force the vertical axis to extend tremendously.

This chart contains a slight oversight - the red line should be labeled "Takeout" because food delivery is the label for the larger category.

Another surprise is in store for us in the Travel category.

Visualcapitalist_spending_travel

I kept staring at the Cruise line, and how it kept dipping below -100 percent. That seems impossible mathematically - unless these cardholders are receiving more refunds than are making new bookings. Not only must the entire sum of 2019 bookings be wiped out, but the records must also show credits issued to these credit (or debit) cards. It's curious that the same situation did not befall the airlines. I think many readers would have liked to see some text discussing this pattern.

***

Now, let me put on a data analyst's hat, and describe some thoughts that raced through my head as I read these charts.

Data analysis is hard, especially if you want to convey the meaning of the data.

The charts clearly illustrate the trends but what do the data reveal? The designer adds commentary on each chart. But most of these comments count as "story time." They contain speculation on what might be causing the trend but there isn't additional data or analyses to support the storyline. In the General Commerce category, the 50 to 100 percent jump in all subcategories around late March is attributed to people stockpiling "non-perishable food, hand sanitizer, and toilet paper". That might be true but this interpretation isn't supported by credit or debit card data because those companies do not have details about what consumers purchased, only the total amount charged to the cards. It's a lot more work to solidify these conclusions.

A lot of data do not mean complete or unbiased data.

The data platform provided data on 5 million consumers. We don't know if these 5 million consumers are representative of the 300+ million people in the U.S. Some basic demographic or geographic analysis can help establish the validity. Strictly speaking, I think they have data on 5 million card accounts, not unique individuals. Most Americans use more than one credit or debit cards. It's not likely the data vendor have a full picture of an individual's or a family's spending.

It's also unclear how much of consumer spending is captured in this dataset. Credit and debit cards are only one form of payment.

Data quality tends to get worse.

One thing that drives data analyst nuts. The spending categories are becoming blurrier. In the last decade or so, big business has come to dominate the American economy. Big business, with bipartisan support, has grown by (a) absorbing little guys, and (b) eliminating boundaries between industry sectors. Around me, there is a Walgreens, several Duane Reades, and a RiteAid. They currently have the same owner, and increasingly offer the same selection. In the meantime, Walmart (big box), CVS (pharmacy), Costco (wholesale), etc. all won regulatory relief to carry groceries, fresh foods, toiletries, etc. So, while CVS or Walgreens is classified as a pharmacy, it's not clear that what proportion of the spending there is for medicines. As big business grows, these categories become less and less meaningful.


The elusive meaning of black paintings and red blocks

Joe N, a longtime reader, tweeted about the following chart, by the People's Policy Project:

3p_oneyearinonemonth_laborflow

This is a simple column chart containing only two numbers, far exceeded by the count of labels and gridlines.

I look at charts like the lady staring at these Ad Reinhardts:

 

SUBJPREINHARDT2-videoSixteenByNine1050

My artist friends say the black squares are not the same, if you look hard enough.

Here is what I learned after one such seating:

The tiny data labels sitting on the inside top edges of the columns hint that the right block is slightly larger than the left block.

The five labels of the vertical axis serve no purpose, nor the gridlines.

The horizontal axis for time is reversed, with 2019 appearing after 2020 (when read left to right).

The left block has one month while the right block has 12 months. This is further confused by the word "All" which shares the same starting and ending letters as "April".

As far as I can tell, the key message of this chart is that the month of April has the impact of a full year. It's like 12 months of outflows from employment hitting the economy in one month.

***

My first response is this chart:

Junkcharts_oneyearinonemonth_laborflow_1

Breaking the left block into 12 pieces, and color-coding the April piece brings out the comparison. You can also see that in 2019, the outflows from employment to unemployment were steady month to month.

Next, I want to see what happens if I restored the omitted months of Jan to March, 2020.

Junkcharts_oneyearinonemonth_laborflow_2

The story changes slightly. Now, the chart says that the first four months have already exceeded the full year of 2019.

Since the values hold steady month to month, with the exception of April 2020, I make a monthly view:

Junkcharts_oneyearinonemonth_laborflow_monthly_bar_1

You can see the slight nudge-up in March 2020 as well. This draws more attention to the break in pattern.

For time-series data, I prefer to look at line charts:

Junkcharts_oneyearinonemonth_laborflow_monthly_line_1

As I explained in this post about employment statistics (or Chapter 6 of Numbersense (link)), the Bureau of Labor Statistics classifies people into three categories: Employed, Unemployed and Not in Labor Force. Exits from Employed to Unemployed status contribute to unemployment in the U.S. To depict a negative trend, it's often natural to use negative numbers:

Junkcharts_oneyearinonemonth_laborflow_monthly_line_neg_1

You may realize that this data series paints only a partial picture of the health of the labor market. While some people exit the Employed status each month, there are others who re-enter or enter the Employed status. We should really care about net flows.

Junkcharts_oneyearinonemonth_laborflow_net_lines

In all of 2019, there were more entrants than exits, leading to a slightly positive net inflow to the Employed status from Unemployed (blue line). In April 2020, the red line (exits) drags the blue line dramatically.

Of course, even this chart is omitting important information. There are also flows from Employed to and from Not in Labor Force.