What is the price for objectivity

I knew I had to remake this chart.

TMC_hospitalizations

The simple message of this chart is hidden behind layers of visual complexity. What the analyst wants readers to focus on (as discerned from the text on the right) is the red line, the seven-day moving average of new hospital admissions due to Covid-19 in Texas.

My eyes kept wandering away from the line. It's the sideway data labels on the columns. It's the columns that take up vastly more space than the red line. It's the sideway date labels on the horizontal axis. It's the redundant axis labels for hospitalizations when the entire data set has already been printed. It's the two hanging diamonds, for which the clues are filed away in the legend above.

Here's a version that brings out the message: after Phase 2 re-opening, the number of hospital admissions has been rising steadily.

Redo_junkcharts_texas_covidhospitaladmissions_1

Dots are used in place of columns, which push these details to the background. The line as well as periods of re-opening are directly labeled, removing the need for a legend.

Here's another visualization:

Redo_junkcharts_texas_covidhospitaladmissions_2

This chart plots the weekly average new hospital admissions, instead of the seven-day moving average. In the previous chart, the raggedness of moving average isn't transmitting any useful information to the average reader. I believe this weekly average metric is easier to grasp for many readers while retaining the general story.

***

On the original chart by TMC, the author said "the daily hospitalization trend shows an objective view of how COVID-19 impacts hospital systems." Objectivity is an impossible standard for any kind of data analysis or visualization. As seen above, the two metrics for measuring the trend in hospitalizations have pros and cons. Even if one insists on using a moving average, there are choices of averaging methods and window sizes.

Scientists are trained to believe in objectivity. It frequently disappoints when we discover that the rest of the world harbors no such notion. If you observe debates between politicians or businesspeople or social scientists, you rarely hear anyone claim one analysis is more objective - or less subjective - than another. The economist who predicts Dow to reach a new record, the business manager who argues for placing discounted products in the front not the back of the store, the sportscaster who maintains Messi is a better player than Ronaldo: do you ever hear these people describe their methods as objective?

Pursuing objectivity leads to the glorification of data dumps. The scientist proclaims disinterest in holding an opinion about the data. This is self-deception though. We clearly have opinions because when someone else  "misinterprets" the data, we express dismay. What is the point of pretending to hold no opinions when most of the world trades in opinions? By being "objective," we never shape the conversation, and forever play defense.


This exercise plan for your lock-down work-out is inspired by Venn

A twitter follower did not appreciate this chart from Nature showing the collection of flu-like symptoms that people reported they have to an UK tracking app. 

Nature tracking app venn diagram

It's a super-complicated Venn diagram. I have written about this type of chart before (see here); it appears to be somewhat popular in the medicine/biology field.

A Venn diagram is not a data visualization because it doesn't plot the data.

Notice that the different compartments of the Venn diagram do not have data encoded in the areas. 

The chart also fails the self-sufficiency test because if you remove the data from it, you end up with a data container - like a world map showing country boundaries and no data.

If you're new here: if a graphic requires the entire dataset to be printed on it for comprehension, then the visual elements of the graphic are not doing any work. The graphic cannot stand on its own.

When the Venn diagram gets complicated, teeming with many compartments, there will be quite a few empty compartments. If I have to make this chart, I'd be nervous about leaving out a number or two by accident. An empty cell can be truly empty or an oversight.

Another trap is that the total doesn't add up. The numbers on this graphic add to 1,764 whereas the study population in the preprint was 1,702. Interestingly, this diagram doesn't show up in the research paper. Given how they winnowed down the study population from all the app downloads, I'm sure there is an innocent explanation as to why those two numbers don't match.

***

The chart also strains the reader. Take the number 18, right in the middle. What combination of symptoms did these 18 people experience? You have to figure out the layers sitting beneath the number. You see dark blue, light blue, orange. If you blink, you might miss the gray at the bottom. Then you have to flip your eyes up to the legend to map these colors to diarrhoea, shortness of breath, anosmia, and fatigue. Oops, I missed the yellow, which is the cough. To be sure, you look at the remaining categories to see where they stand - I've named all of them except fever. The number 18 lies outside fever so this compartment represents everything except fever. 

What's even sadder is there is not much gain from having done it once. Try to interpret the number 50 now. Maybe I'm just slow but it doesn't get better the second or third time around. This graphic not only requires work but painstaking work!

Perhaps a more likely question is how many people who had a loss of smell also had fever. Now it's pretty easy to locate the part of the dark gray oval that overlaps with the orange oval. But now, I have to add all those numbers, 69+17+23+50+17+46 = 222. That's not enough. Next, I must find the total of all the numbers inside the orange oval, which is 222 plus what is inside the orange and outside the dark gray. That turns out to be 829. So among those who had lost smell, the proportion who also had fever is 222/(222+829) = 21 percent. 

How many people had three or more symptoms? I'll let you figure this one out!

 

 

 

 

 

 

 


Make your color legend better with one simple rule

The pie chart about COVID-19 worries illustrates why we should follow a basic rule of constructing color legends: order the categories in the way you expect readers to encounter them.

Here is the chart that I discussed the other day, with the data removed since they are not of concern in this post. (link)

Junkcharts_abccovidbiggestworries_sufficiency

First look at the pie chart. Like me, you probably looked at the orange or the yellow slice first, then we move clockwise around the pie.

Notice that the legend leads with the red square ("Getting It"), which is likely the last item you'll see on the chart.

This is the same chart with the legend re-ordered:

Redo_junkcharts_abcbiggestcovidworries_legend

***

Simple charts can be made better if we follow basic rules of construction. When used frequently, these rules can be made silent. I cover rules for legends as well as many other rules in this Long Read article titled "The Unspoken Conventions of Data Visualization" (link).


Bad data leave chart hanging by the thread

IGNITE National put out a press release saying that Gen Z white men are different from all other race-gender groups because they are more likely to be or lean Republican. The evidence is in this chart:

Genz_survey

Or is it?

Following our Trifecta Checkup framework (link), let's first look at the data. White men is the bottom left group. Democratic = 42%, Independent = 28%, Republican = 48%. That's a total of 118%. Unfortunately, this chart construction error erases the message. We don't know which of the three columns were incorrectly sized, or perhaps the data were incorrectly weighted so that the error is spread out between the three columns.

But the story of the graphic is hanging by the thread - the gap between Democratic and Republican lean amongst white men is 6 percent, which is smaller than the data error of 10 percent. I sent them a tweet asking for a correction. Will post the corrected version if they respond.

Update: The thread didn't break. They replied quickly and issued the following corrected chart:

Genz_corrected

Now, the data for white men are: Democratic = 35%, Independent = 22%; Republican = 40%. Roughly 7% shift for each party affilitation so they may have just started the baseline at the wrong level when inverting the columns.

***

The Visual design also has some problems. I am not a fan of inverting columns. In fact, column inversion may be the root of the error above.

Genz_whitemenLet me zoom in on the white men columns. (see right)

Without looking at the legend, can you guess which color is Democratic, Independent or Republican? Go ahead and take your best guess.

For me, I think red is Republican (by convention), then white is Independent (a neutral color) which means yellow is Democratic.

Here is the legend:

Genz-legend

So I got the yellow and white reversed. And that is another problem with the visual design. For a chart that shows two-party politics in the U.S., there is really no good reason to deviate from the red-blue convention. The color for Independents doesn't matter since it would be understood that the third color would represent them.

If the red-blue convention were followed, readers do not need to consult the legend.

***

In my Long Read article at DataJournalism.com, I included an "unspoken rule" about color selection: use the natural color mapping whenever possible. Go here to read about this and other rules.

The chart breaks another one of the unspoken conventions. When making a legend, place it near the top of the chart. Readers need to know the color mapping before they can understand the chart.

In addition, you want the reader's eyes to read the legend in the same way they read the columns. The columns goes left to right from Democratic to Independent to Republican. The legend should do the same!

***

Here is a quick re-do that fixes the visual issues (except the data error). It's an Excel chart but it doesn't have to be bad.

Redo_genzsurvey

 


Gazing at petals

Reader Murphy pointed me to the following infographic developed by Altmetric to explain their analytics of citations of journal papers. These metrics are alternative in that they arise from non-academic media sources, such as news outlets, blogs, twitter, and reddit.

The key graphic is the petal diagram with a number in the middle.

Altmetric_tetanus

I have a hard time thinking of this object as “data visualization”. Data visualization should visualize the data. Here, the connection between the data and the visual design is tenuous.

There are eight petals arranged around the circle. The legend below the diagram maps the color of each petal to a source of data. Red, for example, represents mentions in news outlets, and green represents mentions in videos.

Each petal is the same size, even though the counts given below differ. So, the petals are like a duplicative legend.

The order of the colors around the circle does not align with its order in the table below, for a mysterious reason.

Then comes another puzzle. The bluish-gray petal appears three times in the diagram. This color is mapped to tweets. Does the number of petals represent the much higher counts of tweets compared to other mentions?

To confirm, I pulled up the graphic for a different paper.

Altmetric_worldwidedeclineofentomofauna

Here, each petal has a different color. Eight petals, eight colors. The count of tweets is still much larger than the frequencies of the other sources. So, the rule of construction appears to be one petal for each relevant data source, and if the total number of data sources fall below eight, then let Twitter claim all the unclaimed petals.

A third sample paper confirms this rule:

Altmetric_dnananodevices

None of the places we were hoping to find data – size of petals, color of petals, number of petals – actually contain any data. Anything the reader wants to learn can be directly read. The “score” that reflects the aggregate “importance” of the corresponding paper is found at the center of the circle. The legend provides the raw data.

***

Some years ago, one of my NYU students worked on a project relating to paper citations. He eventually presented the work at a conference. I featured it previously.

Michaelbales_citationimpact

Notice how the visual design provides context for interpretation – by placing each paper/researcher among its peers, and by using a relative scale (percentiles).

***

I’m ignoring the D corner of the Trifecta Checkup in this post. For any visualization to be meaningful, the data must be meaningful. The type of counting used by Altmetric treats every tweet, every mention, etc. as a tally, making everything worth the same. A mention on CNN counts as much as a mention by a pseudonymous redditor. A pan is the same as a rave. Let’s not forget the fake data menace (link), which  affects all performance metrics.


Taking small steps to bring out the message

Happy new year! Good luck and best wishes!

***

We'll start 2020 with something lighter. On a recent flight, I saw a chart in The Economist that shows the proportion of operating income derived from overseas markets by major grocery chains - the headline said that some of these chains are withdrawing from international markets.

Econ_internationalgroceries_sm

The designer used one color for each grocery chain, and two shades within each color. The legend describes the shades as "total" and "of which: overseas". As with all stacked bar charts, it's a bit confusing where to find the data. The "total" is actually the entire bar, not just the darker shaded part. The darker shaded part is better labeled "home market" as shown below:

Redo_econgroceriesintl_1

The designer's instinct to bring out the importance of international markets to each company's income is well placed. A second small edit helps: plot the international income amounts first, so they line up with the vertical zero axis. Like this:

Redo_econgroceriesintl_2

This is essentially the same chart. The order of international and home market is reversed. I also reversed the shading, so that the international share of income is displayed darker. This shading draws the readers' attention to the key message of the chart.

A stacked bar chart of the absolute dollar amounts is not ideal for showing proportions, because each bar is a different length. Sometimes, plotting relative values summing to 100% for each company may work better.

As it stands, the chart above calls attention to a different message: that Walmart dwarfs the other three global chains. Just the international income of Walmart is larger than the total income of Costco.

***

Please comment below or write me directly if you have ideas for this blog as we enter a new decade. What do you want to see more of? less of?


This Excel chart looks standard but gets everything wrong

The following CNBC chart (link) shows the trend of global car sales by region (or so we think).

Cnbc zh global car sales

This type of chart is quite common in finance/business circles, and has the fingerprint of Excel. After examining it, I nominate it for the Hall of Shame.

***

The chart has three major components vying for our attention: (1) the stacked columns, (2) the yellow line, and (3) the big red dashed arrow.

The easiest to interpret is the yellow line, which is labeled "Total" in the legend. It displays the annual growth rate of car sales around the globe. The data consist of annual percentage changes in car sales, so the slope of the yellow line represents a change of change, which is not particularly useful.

The big red arrow is making the point that the projected decline in global car sales in 2019 will return the world to the slowdown of 2008-9 after almost a decade of growth.

The stacked columns appear to provide a breakdown of the global growth rate by region. Looked at carefully, you'll soon learn that the visual form has hopelessly mangled the data.

Cnbc_globalcarsales_2006

What is the growth rate for Chinese car sales in 2006? Is it 2.5%, the top edge of China's part of the column? Between 1.5% and 2.5%, the extant of China's section? The answer is neither. Because of the stacking, China's growth rate is actually the height of the relevant section, that is to say, 1 percent. So the labels on the vertical axis are not directly useful to learning regional growth rates for most sections of the chart.

Can we read the vertical axis as global growth rate? That's not proper either. The different markets are not equal in size so growth rates cannot be aggregated by simple summing - they must be weighted by relative size.

The negative growth rates present another problem. Even if we agree to sum growth rates ignoring relative market sizes, we still can't get directly to the global growth rate. We would have to take the total of the positive rates and subtract the total of the negative rates.  

***

At this point, you may begin to question everything you thought you knew about this chart. Remember the yellow line, which we thought measures the global growth rate. Take a look at the 2006 column again.

The global growth rate is depicted as 2 percent. And yet every region experienced growth rates below 2 percent! No matter how you aggregate the regions, it's not possible for the world average to be larger than the value of each region.

For 2006, the regional growth rates are: China, 1%; Rest of the World, 1%; Western Europe, 0.1%; United States, -0.25%. A simple sum of those four rates yields 2%, which is shown on the yellow line.

But this number must be divided by four. If we give the four regions equal weight, each is worth a quarter of the total. So the overall average is the sum of each growth rate weighted by 1/4, which is 0.5%. [In reality, the weights of each region should be scaled to reflect its market size.]

***

tldr; The stacked column chart with a line overlay not only fails to communicate the contents of the car sales data but it also leads to misinterpretation.

I discussed several serious problems of this chart form: 

  • stacking the columns make it hard to learn the regional data

  • the trend by region takes a super effort to decipher

  • column stacking promotes reading meaning into the height of the column but the total height is meaningless (because of the negative section) while the net height (positive minus negative) also misleads due to presumptive equal weighting

  • the yellow line shows the sum of the regional data, which is four times the global growth rate that it purports to represent

 

***

PS. [12/4/2019: New post up with a different visualization.]


The time of bird seeds and chart tuneups

The recent post about multi-national companies reminded me of an older post, in which I stepped through data table enhancements.

Here is a video of the process. You can use any tool to implement the steps; even Excel is good enough.

 

 

The video is part of a series called "Data science: the Missing Pieces". In these episodes, I cover the parts of data science that are between the cracks, the little things that textbooks and courses do not typically cover - the things that often block students from learning efficiently.

If you have encountered such things, please comment below to suggest future topics. What is something about visualizing data you wish you learned formally?

***

P.S. Placed here to please the twitter-bot

DSTMP2_goodchart_thumb

 

 


Pulling the multi-national story out, step by step

Reader Aleksander B. found this Economist chart difficult to understand.

Redo_multinat_1

Given the chart title, the reader is looking for a story about multinationals producing lower return on equity than local firms. The first item displayed indicates that multinationals out-performed local firms in the technology sector.

The pie charts on the right column provide additional information about the share of each sector by the type of firms. Is there a correlation between the share of multinationals, and their performance differential relative to local firms?

***

We can clean up the presentation. The first changes include using dots in place of pipes, removing the vertical gridlines, and pushing the zero line to the background:

Redo_multinat_2

The horizontal gridlines attached to the zero line can also be removed:

Redo_multinat_3

Now, we re-order the rows. Start with the aggregate "All sectors". Then, order sectors from the largest under-performance by multinationals to the smallest.

Redo_multinat_4

The pie charts focus only on the share of multinationals. Taking away the remainders speeds up our perception:

Redo_multinat_5

Help the reader understand the data by dividing the sectors into groups, organized by the performance differential:

Redo_multinat_6

For what it's worth, re-sort the sectors from largest to smallest share of multinationals:

Redo_multinat_7

Having created groups of sectors by share of multinationals, I simplify further by showing the average pie chart within each group:

Redo_multinat_8

***

To recap all the edits, here is an animated gif: (if it doesn't play automatically, click on it)

Redo_junkcharts_econmultinat

***

Judging from the last graphic, I am not sure there is much correlation between share of multinationals and the performance differentials. It's interesting that in aggregate, local firms and multinationals performed the same. The average hides the variability by sector: in some sectors, local firms out-performed multinationals, as the original chart title asserted.


As Dorian confounds meteorologists, we keep our minds clear on hurricane graphics, and discover correlation as our friend

As Hurricane Dorian threatens the southeastern coast of the U.S., forecasters are fretting about the lack of consensus among various predictive models used to predict the storm’s trajectory. The uncertainty of these models, as reflected in graphical displays, has been a controversial issue in the visualization community for some time.

Let’s start by reviewing a visual design that has captured meteorologists in recent years, something known as the cone map.

Charley_oldconemap

If asked to explain this map, most of us trace a line through the middle of the cone understood to be the center of the storm, the “cone” as the areas near the storm center that are affected, and the warmer colors (red, orange) as indicating higher levels of impact. [Note: We will  design for this type of map circa 2000s.]

The above interpretation is complete, and feasible. Nevertheless, the data used to make the map are forward-looking, not historical. It is still possible to stick to the same interpretation by substituting historical measurement of impact with its projection. As such, the “warmer” regions are projected to suffer worse damage from the storm than the “cooler” regions (yellow).

After I replace the text that was removed from the map (see below), you may notice the color legend, which discloses that the colors on the map encode probabilities, not storm intensity. The text further explains that the chart shows the most probable path of the center of the storm – while the coloring shows the probability that the storm center will reach specific areas.

Charley_oldconemap

***

When reading a data graphic, we rarely first look for text about how to read the chart. In the case of the cone map, those who didn’t seek out the instructions may form one of these misunderstandings:

  1. For someone living in the yellow-shaded areas, the map does not say that the impact of the storm is projected to be lighter; it’s that the center of the storm has a lower chance of passing right through. If, however, the storm does pay a visit, the intensity of the winds will reach hurricane grade.
  2. For someone living outside the cone, the map does not say that the storm will definitely bypass you; it’s that the chance of a direct hit is below the threshold needed to show up on the cone map. Thee threshold is set to attain 66% accurate. The actual paths of storms are expected to stay inside the cone two out of three times.

Adding to the confusion, other designers have produced cone maps in which color is encoding projections of wind speeds. Here is the one for Dorian.

AL052019_wind_probs_64_F120

This map displays essentially what we thought the first cone map was showing.

One way to differentiate the two maps is to roll time forward, and imagine what the maps should look like after the storm has passed through. In the wind-speed map (shown below right), we will see a cone of damage, with warmer colors indicating regions that experienced stronger winds.

Projectedactualwinds_irma

In the storm-center map (below right), we should see a single curve, showing the exact trajectory of the center of the storm. In other words, the cone of uncertainty dissipates over time, just like the storm itself.

Projectedactualstormcenter_irma

 

After scientists learned that readers were misinterpreting the cone maps, they started to issue warnings, and also re-designed the cone map. The cone map now comes with a black-box health warning right up top. Also, in the storm-center cone map, color is no longer used. The National Hurricane Center even made a youtube pointing out the dos and donts of using the cone map.

AL052019_5day_cone_with_line_and_wind

***

The conclusion drawn from misreading the cone map isn’t as devastating as it’s made out to be. This is because the two issues are correlated. Since wind speeds are likely to be stronger nearer to the center of the storm, if one lives in a region that has a low chance of being a direct hit, then that region is also likely to experience lower average wind speeds than those nearer to the projected center of the storm’s path.

Alberto Cairo has written often about these maps, and in his upcoming book, How Charts Lie, there is a nice section addressing his work with colleagues at the University of Miami on improving public understanding of these hurricane graphics. I highly recommended Cairo’s book here.

P.S. [9/5/2019] Alberto also put out a post about the hurricane cone map.