The time has arrived for cumulative charts

Long-time reader Scott S. asked me about this Washington Post chart that shows the disappearance of pediatric flu deaths in the U.S. this season:

Washingtonpost_pediatricfludeaths

The dataset behind this chart is highly favorable to the designer, because the signal in the data is so strong. This is a good chart. The key point is shown clearly right at the top, with an informative title. Gridlines are very restrained. I'd draw attention to the horizontal axis. The master stroke here is omitting the week labels, which are likely confusing to all but the people familiar with this dataset.

Scott suggested using a line chart. I agree. And especially if we plot cumulative counts, rather than weekly deaths. Here's a quick sketch of such a chart:

Junkcharts_redo_wppedflu_panel

(On second thought, I'd remove the week numbers from the horizontal axis, and just go with the month labels. The Washington Post designer is right in realizing that those week numbers are meaningless to most readers.)

The vaccine trials have brought this cumulative count chart form to the mainstream. For anyone who have seen the vaccine efficacy charts, the interpretation of the panel of line charts should come naturally.

Instead of four plots, I prefer one plot with four superimposed lines. Like this:

Junkcharts_redo_wppeddeaths_superpose2

 

 

 


Locating the political center

I mentioned the September special edition of Bloomberg Businessweek on the election in this prior post. Today, I'm featuring another data visualization from the magazine.

Bloomberg_politicalcenter_print_sm

***

Here are the rightmost two charts.

Bloomberg_politicalcenter_rightside Time runs from top to bottom, spanning four decades.

Each chart covers a political issue. These two charts concern abortion and marijuana.

The marijuana question (far right) has only two answers, legalize or don't legalize. The underlying data measure the proportions of people agreeing to each point of view. Roughly three-quarters of the population disagreed with legalization in 1980 while two-thirds agree with it in 2020.

Notice that there are no horizontal axis labels. This is a great editorial decision. Only coarse trends are of interest here. It's not hard to figure out the relative proportions. Adding labels would just clutter up the display.

By contrast, the abortion question has three answer choices. The middle option is "Sometimes," which is represented by a white color, with a dot pattern. This is an issue on which public opinion in aggregate has barely shifted over time.

The charts are organized in a small-multiples format. It's likely that readers are consuming each chart individually.

***

What about the dashed line that splits each chart in half? Why is it there?

The vertical line assists our perception of the proportions. Think of it as a single gridline.

In fact, this line is underplayed. The headline of the article is "tracking the political center." Where is the center?

Until now, we've paid attention to the boundaries between the differently colored areas. But those boundaries do not locate the political center!

The vertical dashed line is the political center; it represents the view of the median American. In 1980, the line sat inside the gray section, meaning the median American opposed legalizing marijuana. But the prevalent view was losing support over time and by 2010, there wer more Americans wanting to legalize marijuana than not. This is when the vertical line crossed into the green zone.

The following charts draw attention to the middle line, instead of the color boundaries:

Junkcharts_redo_bloombergpoliticalcenterrightsideOn these charts, as you glance down the middle line, you can see that for abortion, the political center has never exited the middle category while for marijuana, the median American didn't want to legalize it until an inflection point was reached around 2010.

I highlight these inflection points with yellow dots.

***

The effect on readers is entirely changed. The original charts draw attention to the areas first while the new charts pull your eyes to the vertical line.

 


What is the price for objectivity

I knew I had to remake this chart.

TMC_hospitalizations

The simple message of this chart is hidden behind layers of visual complexity. What the analyst wants readers to focus on (as discerned from the text on the right) is the red line, the seven-day moving average of new hospital admissions due to Covid-19 in Texas.

My eyes kept wandering away from the line. It's the sideway data labels on the columns. It's the columns that take up vastly more space than the red line. It's the sideway date labels on the horizontal axis. It's the redundant axis labels for hospitalizations when the entire data set has already been printed. It's the two hanging diamonds, for which the clues are filed away in the legend above.

Here's a version that brings out the message: after Phase 2 re-opening, the number of hospital admissions has been rising steadily.

Redo_junkcharts_texas_covidhospitaladmissions_1

Dots are used in place of columns, which push these details to the background. The line as well as periods of re-opening are directly labeled, removing the need for a legend.

Here's another visualization:

Redo_junkcharts_texas_covidhospitaladmissions_2

This chart plots the weekly average new hospital admissions, instead of the seven-day moving average. In the previous chart, the raggedness of moving average isn't transmitting any useful information to the average reader. I believe this weekly average metric is easier to grasp for many readers while retaining the general story.

***

On the original chart by TMC, the author said "the daily hospitalization trend shows an objective view of how COVID-19 impacts hospital systems." Objectivity is an impossible standard for any kind of data analysis or visualization. As seen above, the two metrics for measuring the trend in hospitalizations have pros and cons. Even if one insists on using a moving average, there are choices of averaging methods and window sizes.

Scientists are trained to believe in objectivity. It frequently disappoints when we discover that the rest of the world harbors no such notion. If you observe debates between politicians or businesspeople or social scientists, you rarely hear anyone claim one analysis is more objective - or less subjective - than another. The economist who predicts Dow to reach a new record, the business manager who argues for placing discounted products in the front not the back of the store, the sportscaster who maintains Messi is a better player than Ronaldo: do you ever hear these people describe their methods as objective?

Pursuing objectivity leads to the glorification of data dumps. The scientist proclaims disinterest in holding an opinion about the data. This is self-deception though. We clearly have opinions because when someone else  "misinterprets" the data, we express dismay. What is the point of pretending to hold no opinions when most of the world trades in opinions? By being "objective," we never shape the conversation, and forever play defense.


The elusive meaning of black paintings and red blocks

Joe N, a longtime reader, tweeted about the following chart, by the People's Policy Project:

3p_oneyearinonemonth_laborflow

This is a simple column chart containing only two numbers, far exceeded by the count of labels and gridlines.

I look at charts like the lady staring at these Ad Reinhardts:

 

SUBJPREINHARDT2-videoSixteenByNine1050

My artist friends say the black squares are not the same, if you look hard enough.

Here is what I learned after one such seating:

The tiny data labels sitting on the inside top edges of the columns hint that the right block is slightly larger than the left block.

The five labels of the vertical axis serve no purpose, nor the gridlines.

The horizontal axis for time is reversed, with 2019 appearing after 2020 (when read left to right).

The left block has one month while the right block has 12 months. This is further confused by the word "All" which shares the same starting and ending letters as "April".

As far as I can tell, the key message of this chart is that the month of April has the impact of a full year. It's like 12 months of outflows from employment hitting the economy in one month.

***

My first response is this chart:

Junkcharts_oneyearinonemonth_laborflow_1

Breaking the left block into 12 pieces, and color-coding the April piece brings out the comparison. You can also see that in 2019, the outflows from employment to unemployment were steady month to month.

Next, I want to see what happens if I restored the omitted months of Jan to March, 2020.

Junkcharts_oneyearinonemonth_laborflow_2

The story changes slightly. Now, the chart says that the first four months have already exceeded the full year of 2019.

Since the values hold steady month to month, with the exception of April 2020, I make a monthly view:

Junkcharts_oneyearinonemonth_laborflow_monthly_bar_1

You can see the slight nudge-up in March 2020 as well. This draws more attention to the break in pattern.

For time-series data, I prefer to look at line charts:

Junkcharts_oneyearinonemonth_laborflow_monthly_line_1

As I explained in this post about employment statistics (or Chapter 6 of Numbersense (link)), the Bureau of Labor Statistics classifies people into three categories: Employed, Unemployed and Not in Labor Force. Exits from Employed to Unemployed status contribute to unemployment in the U.S. To depict a negative trend, it's often natural to use negative numbers:

Junkcharts_oneyearinonemonth_laborflow_monthly_line_neg_1

You may realize that this data series paints only a partial picture of the health of the labor market. While some people exit the Employed status each month, there are others who re-enter or enter the Employed status. We should really care about net flows.

Junkcharts_oneyearinonemonth_laborflow_net_lines

In all of 2019, there were more entrants than exits, leading to a slightly positive net inflow to the Employed status from Unemployed (blue line). In April 2020, the red line (exits) drags the blue line dramatically.

Of course, even this chart is omitting important information. There are also flows from Employed to and from Not in Labor Force.

 

 

 

 

 


Comparing chance of death of coronavirus and flu

The COVID-19 charts are proving one thing. When the topic of a dataviz is timely and impactful, readers will study the graphics and ask questions. I've been sent some of these charts lately, and will be featuring them here.

A former student saw this chart from Business Insider (link) and didn't like it.

Businesinsider_coronavirus_flu_compare

My initial reaction was generally positive. It's clear the chart addresses a comparison between death rates of the flu and COVID19, an important current question. The side-by-side panel is effective at allowing such a comparison. The column charts look decent, and there aren't excessive gridlines.

Sure, one sees a few simple design fixes, like removing the vertical axis altogether (since the entire dataset has already been printed). I'd also un-slant the age labels.

***

I'd like to discuss some subtler improvements.

A primary challenge is dealing with the different definitions of age groups across the two datasets. While the side-by-side column charts prompt readers to go left-right, right-left in comparing death rates, it's not easy to identify which column to compare to which. This is not fixable in the datasets because the organizations that compile them define their own age groups.

Also, I prefer to superimpose the death rates on the same chart, using something like a dot plot rather than a column chart. This makes the comparison even easier.

Here is a revised visualization:

Redo_businessinsider_covid19fatalitybyage

The contents of this chart raise several challenges to public health officials. Clearly, hospital resources should be preferentially offered to older patients. But young people could be spreading the virus among the community.

Caution is advised as the data for COVID19 suffers from many types of inaccuracies, as outlined here.


Who is a millennial? An example of handling uncertainty

I found this fascinating chart from CNBC, which attempts to nail down the definition of a millennial.

Millennials2-01

It turns out everyone defines "millennials" differently. They found 23 different definitions. Some media outlets apply different definitions in different items.

I appreciate this effort a lot. The design is thoughtful. In making this chart, the designer added the following guides:

  • The text draws attention to the definition with the shortest range of birth years, and the one with the largest range.
  • The dashed gray gridlines help with reading the endpoints of each bar.
  • The yellow band illustrates the so-called average range. It appears that this average range is formed by taking the average of the beginning years and the average of the ending years. This indicates a desire to allow comparisons between each definition and the average range.
  • The bars are ordered by the ending birth year (right edge).

The underlying issue is how to display uncertainty. The interest here is not just to feature the "average" definition of a millennial but to show the range of definitions.

***

In making my chart, I apply a different way to find the "average" range. Given any year, say 1990, what is the chance that it is included in any of the definitions? In other words, what proportion of the definitions include that year? In the following chart, the darker the color, the more likely that year is included by the "average" opinion.

Redo_junkcharts_cnbcmillennials

I ordered the bars from shortest to the longest so there is no need to annotate them. Based on this analysis, 90 percent (or higher) of the sources list 19651985 to 1993 as part of the range while 70 percent (or higher) list 19611981 to 1996 as part of the range.

 

 


Does this chart tell the sordid tale of TI's decline?

The Hustle has an interesting article on the demise of the TI calculator, which is popular in business circles. The article uses this bar chart:

Hustle_ti_calculator_chart

From a Trifecta Checkup perspective, this is a Type DV chart. (See this guide to the Trifecta Checkup.)

The chart addresses a nice question: is the TI graphing calculator a victim of new technologies?

The visual design is marred by the use of the calculator images. The images add nothing to our understanding and create potential for confusion. Here is a version without the images for comparison.

Redo_junkcharts_hustlet1calc

The gridlines are placed to reveal the steepness of the decline. The sales in 2019 will likely be half those of 2014.

What about the Data? This would have been straightforward if the revenues shown are sales of the TI calculator. But according to the subtitle, the data include a whole lot more than calculators - it's the "other revenues" category in the financial reports of Texas Instrument which markets the TI. 

It requires a leap of faith to believe this data. It is entirely possible that TI calculator sales increased while total "other revenues" decreased! The decline of TI calculator could be more drastic than shown here. We simply don't have enough data to say for sure.

 

P.S. [10/3/2019] Fixed TI.

 

 


The time of bird seeds and chart tuneups

The recent post about multi-national companies reminded me of an older post, in which I stepped through data table enhancements.

Here is a video of the process. You can use any tool to implement the steps; even Excel is good enough.

 

 

The video is part of a series called "Data science: the Missing Pieces". In these episodes, I cover the parts of data science that are between the cracks, the little things that textbooks and courses do not typically cover - the things that often block students from learning efficiently.

If you have encountered such things, please comment below to suggest future topics. What is something about visualizing data you wish you learned formally?

***

P.S. Placed here to please the twitter-bot

DSTMP2_goodchart_thumb

 

 


Pulling the multi-national story out, step by step

Reader Aleksander B. found this Economist chart difficult to understand.

Redo_multinat_1

Given the chart title, the reader is looking for a story about multinationals producing lower return on equity than local firms. The first item displayed indicates that multinationals out-performed local firms in the technology sector.

The pie charts on the right column provide additional information about the share of each sector by the type of firms. Is there a correlation between the share of multinationals, and their performance differential relative to local firms?

***

We can clean up the presentation. The first changes include using dots in place of pipes, removing the vertical gridlines, and pushing the zero line to the background:

Redo_multinat_2

The horizontal gridlines attached to the zero line can also be removed:

Redo_multinat_3

Now, we re-order the rows. Start with the aggregate "All sectors". Then, order sectors from the largest under-performance by multinationals to the smallest.

Redo_multinat_4

The pie charts focus only on the share of multinationals. Taking away the remainders speeds up our perception:

Redo_multinat_5

Help the reader understand the data by dividing the sectors into groups, organized by the performance differential:

Redo_multinat_6

For what it's worth, re-sort the sectors from largest to smallest share of multinationals:

Redo_multinat_7

Having created groups of sectors by share of multinationals, I simplify further by showing the average pie chart within each group:

Redo_multinat_8

***

To recap all the edits, here is an animated gif: (if it doesn't play automatically, click on it)

Redo_junkcharts_econmultinat

***

Judging from the last graphic, I am not sure there is much correlation between share of multinationals and the performance differentials. It's interesting that in aggregate, local firms and multinationals performed the same. The average hides the variability by sector: in some sectors, local firms out-performed multinationals, as the original chart title asserted.


Clarifying comparisons in censored cohort data: UK housing affordability

If you're pondering over the following chart for five minutes or more, don't be ashamed. I took longer than that.

Ft_ukgenerationalhousing

The chart accompanied a Financial Times article about inter-generational fairness in the U.K. To cut to the chase, a recently released study found that younger generations are spending substantially higher proportions of their incomes to pay for housing costs. The FT article is here (behind paywall). FT actually slightly modified the original chart, which I pulled from the Home Affront report by the Intergenerational Commission.

Uk_generational_propincomehousing

One stumbling block is to figure out what is plotted on the horizontal axis. The label "Age" has gone missing. Even though I am familiar with cohort analysis (here, generational analysis), it took effort to understand why the lines are not uniformly growing in lengths. Typically, the older generation is observed for a longer period of time, and thus should have a longer line.

In particular, the orange line, representing people born before 1895 only shows up for a five-year range, from ages 70 to 75. This was confusing because surely these people have lived through ages 20 to 70. I'm assuming the "left censoring" (missing data on the left side) is because of non-existence of old records.

The dataset is also right-censored (missing data on the right side). This occurs with the younger generations (the top three lines) because those cohorts have not yet reached certain ages. The interpretation is further complicated by the range of birth years in each cohort but let me not go there.

TL;DR ... each line represents a generation of Britons, defined by their birth years. The generations are compared by how much of their incomes did they spend on housing costs. The twist is that we control for age, meaning that we compare these generations at the same age (i.e. at each life stage).

***

Here is my version of the same chart:

Junkcharts_redo_ukgenerationalhousing_1

Here are some of the key edits:

  • Vertical blocks are introduced to break up the analysis by life stage. These guide readers to compare the lines vertically i.e. across generations
  • The generations are explicitly described as cohorts by birth years
  • The labels for the generations are placed next to the lines
  • Gridlines are pushed to the back
  • The age axis is explicitly labeled
  • Age labels are thinned
  • A hierarchy on colors
  • The line segments with incomplete records are dimmed

The harmful effect of colors can be seen below. This chart is the same as the one above, except for retaining the colors of the original chart:

Junkcharts_redo_ukgenerationalhousing_2