Metaphors, maps, and communicating data

There are some data visualization that are obviously bad. But what makes them bad?

Here is an example of such an effort:

Carbon footprint 2021-02-15_0

This visualization of carbon emissions is not successful. There is precious little that a reader can learn from this chart without expensing a lot of effort. It's relatively easy to identify the largest emitters of carbon but since the data are not expressed per-capita, the chart mainly informs us which countries have the largest populations. 

The color of the bubbles informs readers which countries belong to which parts of the world. However, it distorts the location of countries within regions, and regions relative to regions, as the primary constraint is fitting the bubbles inside the shape of a foot.

The visualization gives a very rough estimate of the relative sizes of total emissions. The circles not being perfect circles don't help. 

It's relatively easy to list the top emitters in each region but it's hard to list the top 10 emitters in the world (try!) 

The small emitters stole all of the attention as they account for most of the labels - and they engender a huge web of guiding lines - an unsightly nuisance.

The diagram clings dearly to the "carbon footprint" metaphor. Does this metaphor help readers consume the emissions data? Conversely, does it slow them down?

A more conventional design uses a cartogram, a type of map in which the positioning of countries are roughly preserved while the geographical areas are coded to the data. Here's how it looks:

Carbonatlasthumb

I can't seem to source this effort. If any reader can find the original source, please comment below.

This cartogram is a rearrangement of the footprint illustration. The map construct eliminates the need to include a color legend which just tells people which country is in which continent. The details of smaller countries are pushed to the bottom. 

In the footprint visualization, I'd even consider getting rid of the legend completely. This means trusting that readers know South Africa is part of Africa, and China is part of Asia.

Carbonfootprint_part

Imagine: what if this chart comes without a color legend? Do we really need it?

***

I'd like to try a word cloud visual for this dataset. Something that looks like this (obviously with the right data encoding):

Michaeltompsett_worldmapwords

(This map is by Michael Tompsett who sells it here.)

 


Reading an infographic about our climate crisis

Let's explore an infographic by SCMP, which draws attention to the alarming temperature recorded at Verkhoyansk in Russia on June 20, 2020. The original work was on the back page of the printed newspaper, referred to in this tweet.

This view of the globe brings out the two key pieces of evidence presented in the infographic: the rise in temperature in unexpected places, and the shrinkage of the Arctic ice.

Scmp_russianheat_1a

A notable design decision is to omit the color scale. On inspection, the scale is present - it was sewn into the graphic.

Scmp_russianheat_colorscale

I applaud this decision as it does not take the reader's eyes away from the graphic. Some information is lost as the scale isn't presented in full details but I doubt many readers need those details.

A key takeaway is that the temperature in Verkhoyansk, which is on the edge of the Arctic Circle, was the same as in New Delhi in India on that day. We can see how the red was encroaching upon the Arctic Circle.

***Scmp_russianheat_2a

Next, the rapid shrinkage of the Arctic ice is presented in two ways. First, a series of maps.

The annotations are pared to the minimum. The presentation is simple enough such that we can visually judge that the amount of ice cover has roughly halved from 1980 to 2009.

A numerical measure of the drop is provided on the side.

Then, a line chart reinforces this message.

The line chart emphasizes change over time while the series of maps reveals change over space.

Scmp_russianheat_3a

This chart suggests that the year 2020 may break the record for the smallest ice cover since 1980. The maps of Australia and India provide context to interpret the size of the Arctic ice cover.

I'd suggest reversing the pink and black colors so as to refer back to the blue and pink lines in the globe above.

***

The final chart shows the average temperature worldwide and in the Arctic, relative to a reference period (1981-2000).

Scmp_russianheat_4

This one is tough. It looks like an area chart but it should be read as a line chart. The darker line is the anomaly of Arctic average temperature while the lighter line is the anomaly of the global average temperature. The two series are synced except for a brief period around 1940. Since 2000, the temperatures have been dramatically rising above that of the reference period.

If this is a stacked area chart, then we'd interpret the two data series as summable, with the sum of the data series signifying something interesting. For example, the market shares of different web browsers sum to the total size of the market.

But the chart above should not be read as a stacked area chart because the outside envelope isn't the sum of the two anomalies. The problem is revealed if we try to articulate what the color shades mean.

Scmp_russianheat_4_inset

On the far right, it seems like the dark shade is paired with the lighter line and represents global positive anomalies while the lighter shade shows Arctic's anomalies in excess of global. This interpretation only works if the Arctic line always sits above the global line. This pattern is broken in the late 1990s.

Around 1999, the Arctic's anomaly is negative while the global anomaly is positive. Here, the global anomaly gets the lighter shade while the Arctic one is blue.

One possible fix is to encode the size of the anomaly into the color of the line. The further away from zero, the darker the red/blue color.

 

 


Dreamy Hawaii

I really enjoyed this visual story by ProPublica and Honolulu Star-Advertiser about the plight of beaches in Hawaii (link).

The story begins with a beautiful invitation:

Propublica_hawaiibeachesfrontimage

This design reminds me of Vimeo's old home page. (It no longer looks like this today but this screenshot came from when I was the data guy there.) In both cases, the images are not static but moving.

Vimeo-homepage

The tour de force of this visual story is an annotated walk along the Lanikai Beach. Here is a snapshot at one of the stops:

Propublica_hawaiibeaches_1368MokuluaDr_small

This shows a particular homeowner who, according to documents, was permitted to rebuild a destroyed seawall even though officials were supposed to disallow reconstruction in order to protect beaches from eroding. The property is marked on the map above. The image inside the box is a gif showing waves smashing the seawall.

As the reader scrolls down, the image window runs through a carousel of gifs of houses along the beach. The images are synchronized to the reader's progress along the shore. The narrative makes stops at specific houses at which point a text box pops up to provide color commentary.

***

The erosion crisis is shown in this pair of maps.

Propublica_hawaiibeaches_oldnewshoreline-sm

There's some fancy work behind the scenes to patch together images, and estimate the boundaries of th beaches.

***

The following map is notable for its simplicity. There are no unnecessary details and labels. We don't need to know the name of every street or a specific restaurant. Removing excess details makes readers focus on the informative parts. 

Propublica_hawaiibeaches_simplemap-sm

Clicking on the dots brings up more details.

***

Enjoy the entire story here.


Locating the political center

I mentioned the September special edition of Bloomberg Businessweek on the election in this prior post. Today, I'm featuring another data visualization from the magazine.

Bloomberg_politicalcenter_print_sm

***

Here are the rightmost two charts.

Bloomberg_politicalcenter_rightside Time runs from top to bottom, spanning four decades.

Each chart covers a political issue. These two charts concern abortion and marijuana.

The marijuana question (far right) has only two answers, legalize or don't legalize. The underlying data measure the proportions of people agreeing to each point of view. Roughly three-quarters of the population disagreed with legalization in 1980 while two-thirds agree with it in 2020.

Notice that there are no horizontal axis labels. This is a great editorial decision. Only coarse trends are of interest here. It's not hard to figure out the relative proportions. Adding labels would just clutter up the display.

By contrast, the abortion question has three answer choices. The middle option is "Sometimes," which is represented by a white color, with a dot pattern. This is an issue on which public opinion in aggregate has barely shifted over time.

The charts are organized in a small-multiples format. It's likely that readers are consuming each chart individually.

***

What about the dashed line that splits each chart in half? Why is it there?

The vertical line assists our perception of the proportions. Think of it as a single gridline.

In fact, this line is underplayed. The headline of the article is "tracking the political center." Where is the center?

Until now, we've paid attention to the boundaries between the differently colored areas. But those boundaries do not locate the political center!

The vertical dashed line is the political center; it represents the view of the median American. In 1980, the line sat inside the gray section, meaning the median American opposed legalizing marijuana. But the prevalent view was losing support over time and by 2010, there wer more Americans wanting to legalize marijuana than not. This is when the vertical line crossed into the green zone.

The following charts draw attention to the middle line, instead of the color boundaries:

Junkcharts_redo_bloombergpoliticalcenterrightsideOn these charts, as you glance down the middle line, you can see that for abortion, the political center has never exited the middle category while for marijuana, the median American didn't want to legalize it until an inflection point was reached around 2010.

I highlight these inflection points with yellow dots.

***

The effect on readers is entirely changed. The original charts draw attention to the areas first while the new charts pull your eyes to the vertical line.

 


How many details to include in a chart

This graphic by Bloomberg provides the context for understanding the severity of the Atlantic storm season. (link)

Bloomberg_2020storms_vertical

At this point of the season, 2020 appears to be one of the most severe in history.

I was momentarily fascinated by a feature of modern browser-based data visualization: the death of the aspect ratio. When the browser window is stretched sufficiently wide, the chart above is transformed to this look:

Bloomberg_2020storms_horizontal

The chart designer has lost control of the aspect ratio.

***

This Bloomberg chart is an example of the spaghetti-style plots that convey variability by displaying individual units of data (here, storm years). The envelope of the growth curves gives the range of historical counts while the density of curves roughly offers some sense of the most likely counts at different points of the season.

But these spaghetti-style plots are not precise at conveying the variability because the density is hard to gauge. That's where aggregating the individual units helps.

The following chart does not show individual storm years. It shows the counts for the median season at selected points in time, and also a band of variability (for example, you'd include say 90 or 95% of the seasons).

Redo_bloomberg_2020storms

I don't have the raw data so the aggregating is done by eyeballing the spaghetti.

I prefer this presentation even though it does not plot every single data point one has in the dataset.

 

 


Choosing between individuals and aggregates

Friend/reader Thomas B. alerted me to this paper that describes some of the key chart forms used by cancer researchers.

It strikes me that many of the "new" charts plot granular data at the individual level. This heatmap showing gene expressions show one column per patient:

Jnci_genemap

This so-called swimmer plot shows one bar per patient:

Jnci_swimlanes

This spider plot shows the progression of individual patients over time. Key events are marked with symbols.

Jnci_spaghetti

These chart forms are distinguished from other ones that plot aggregated statistics: statistical averages, medians, subgroup averages, and so on.

One obvious limitation of such charts is their lack of scalability. The number of patients, the variability of the metric, and the timing of trends all drive up the amount of messiness.

I am left wondering what Question is being addressed by these plots. If we are concerned about treatment of an individual patient, then showing each line by itself would be clearer. If we are interested in the average trends of patients, then a chart that plots the overall average, or subgroup averages would be more accurate. If the interpretation of the individual's trend requires comparing with similar patients, then showing that individual's line against the subgroup average would be preferred.

When shown these charts of individual lines, readers are tempted to play the statistician - without using appropriate tools! Readers draw aggregate conclusions, performing the aggregation in their heads.

The authors of the paper note: "Spider plots only provide good visual qualitative assessment but do not allow for formal statistical inference." I agree with the second part. The first part is a fallacy - if the visual qualitative assessment is good enough, then no formal inference is necessary! The same argument is often made when people say they don't need advanced analysis because their simple analysis is "directionally accurate". When is something "directionally inaccurate"? How would one know?

Reference: Chia, Gedye, et. al., "Current and Evolving Methods to Visualize Biological Data in Cancer Research", JNCI, 2016, 108(8). (link)

***

Meteoreologists, whom I featured in the previous post, also have their own spider-like chart for hurricanes. They call it a spaghetti map:

Dorian_spaghetti

Compare this to the "cone of uncertainty" map that was featured in the prior post:

AL052019_5day_cone_with_line_and_wind

These two charts build upon the same dataset. The cone map, as we discussed, shows the range of probable paths of the storm center, based on all simulations of all acceptable models for projection. The spaghetti map shows selected individual simulations. Each line is the most likely trajectory of the storm center as predicted by a single simulation from a single model.

The problem is that each predictive model type has its own historical accuracy (known as "skill"), and so the lines embody different levels of importance. Further, it's not immediately clear if all possible lines are drawn so any reader making conclusions of, say, the envelope containing x percent of these lines is likely to be fooled. Eyeballing the "cone" that contains x percent of the lines is not trivial either. We tend to naturally drift toward aggregate statistical conclusions without the benefit of appropriate tools.

Plots of individuals should be used to address the specific problem of assessing individuals.


As Dorian confounds meteorologists, we keep our minds clear on hurricane graphics, and discover correlation as our friend

As Hurricane Dorian threatens the southeastern coast of the U.S., forecasters are fretting about the lack of consensus among various predictive models used to predict the storm’s trajectory. The uncertainty of these models, as reflected in graphical displays, has been a controversial issue in the visualization community for some time.

Let’s start by reviewing a visual design that has captured meteorologists in recent years, something known as the cone map.

Charley_oldconemap

If asked to explain this map, most of us trace a line through the middle of the cone understood to be the center of the storm, the “cone” as the areas near the storm center that are affected, and the warmer colors (red, orange) as indicating higher levels of impact. [Note: We will  design for this type of map circa 2000s.]

The above interpretation is complete, and feasible. Nevertheless, the data used to make the map are forward-looking, not historical. It is still possible to stick to the same interpretation by substituting historical measurement of impact with its projection. As such, the “warmer” regions are projected to suffer worse damage from the storm than the “cooler” regions (yellow).

After I replace the text that was removed from the map (see below), you may notice the color legend, which discloses that the colors on the map encode probabilities, not storm intensity. The text further explains that the chart shows the most probable path of the center of the storm – while the coloring shows the probability that the storm center will reach specific areas.

Charley_oldconemap

***

When reading a data graphic, we rarely first look for text about how to read the chart. In the case of the cone map, those who didn’t seek out the instructions may form one of these misunderstandings:

  1. For someone living in the yellow-shaded areas, the map does not say that the impact of the storm is projected to be lighter; it’s that the center of the storm has a lower chance of passing right through. If, however, the storm does pay a visit, the intensity of the winds will reach hurricane grade.
  2. For someone living outside the cone, the map does not say that the storm will definitely bypass you; it’s that the chance of a direct hit is below the threshold needed to show up on the cone map. Thee threshold is set to attain 66% accurate. The actual paths of storms are expected to stay inside the cone two out of three times.

Adding to the confusion, other designers have produced cone maps in which color is encoding projections of wind speeds. Here is the one for Dorian.

AL052019_wind_probs_64_F120

This map displays essentially what we thought the first cone map was showing.

One way to differentiate the two maps is to roll time forward, and imagine what the maps should look like after the storm has passed through. In the wind-speed map (shown below right), we will see a cone of damage, with warmer colors indicating regions that experienced stronger winds.

Projectedactualwinds_irma

In the storm-center map (below right), we should see a single curve, showing the exact trajectory of the center of the storm. In other words, the cone of uncertainty dissipates over time, just like the storm itself.

Projectedactualstormcenter_irma

 

After scientists learned that readers were misinterpreting the cone maps, they started to issue warnings, and also re-designed the cone map. The cone map now comes with a black-box health warning right up top. Also, in the storm-center cone map, color is no longer used. The National Hurricane Center even made a youtube pointing out the dos and donts of using the cone map.

AL052019_5day_cone_with_line_and_wind

***

The conclusion drawn from misreading the cone map isn’t as devastating as it’s made out to be. This is because the two issues are correlated. Since wind speeds are likely to be stronger nearer to the center of the storm, if one lives in a region that has a low chance of being a direct hit, then that region is also likely to experience lower average wind speeds than those nearer to the projected center of the storm’s path.

Alberto Cairo has written often about these maps, and in his upcoming book, How Charts Lie, there is a nice section addressing his work with colleagues at the University of Miami on improving public understanding of these hurricane graphics. I highly recommended Cairo’s book here.

P.S. [9/5/2019] Alberto also put out a post about the hurricane cone map.

 

 

 


Water stress served two ways

Via Alberto Cairo (whose new book How Charts Lie can be pre-ordered!), I found the Water Stress data visualization by the Washington Post. (link)

The main interest here is how they visualized the different levels of water stress across the U.S. Water stress is some metric defined by the Water Resources Institute that, to my mind, measures the demand versus supply of water. The higher the water stress, the higher the risk of experiencing droughts.

There are two ways in which the water stress data are shown: the first is a map, and the second is a bubble plot.

Wp_waterstress

This project provides a great setting to compare and contrast these chart forms.

How Data are Coded

In a map, the data are usually coded as colors. Sometimes, additional details can be coded as shades, or moire patterns within the colors. But the map form locks down a number of useful dimensions - including x and y location, size and shape. The outline map reserves all these dimensions, rendering them unavailable to encode data.

By contrast, the bubble plot admits a good number of dimensions. The key ones are the x- and y- location. Then, you can also encode data in the size of the dots, the shape, and the color of the dots.

In our map example, the colors encode the water stress level, and a moire pattern encodes "arid areas". For the scatter plot, x = daily water use, y = water stress level, grouped by magnitude, color = water stress level, size = population. (Shape is constant.)

Spatial Correlation

The map is far superior in displaying spatial correlation. It's visually obvious that the southwestern states experience higher stress levels.

This spatial knowledge is relinquished when using a bubble plot. The designer relies on the knowledge of the U.S. map in the head of the readers. It is possible to code this into one of the available dimensions, e.g. one could make x = U.S. regions, but another variable is sacrificed.

Non-contiguous Spatial Patterns

When spatial patterns are contiguous, the map functions well. Sometimes, spatial patterns are disjoint. In that case, the bubble plot, which de-emphasizes the physcial locations, can be superior. In our example, the vertical axis divides the states into five groups based on their water stress levels. Try figuring out which states are "medium to high" water stress from the map, and you'll see the difference.

Finer Geographies

The map handles finer geographical units like counties and precincts better. It's completely natural.

In the bubble plot, shifting to finer units causes the number of dots to explode. This clutters up the chart. Besides, while most (we hope) Americans know the 50 states, most of us can't recite counties or precincts. Thus, the designer can't rely on knowledge in our heads. It would be impossible to learn spatial patterns from such a chart.

***

The key, as always, is to nail down your message, then select the right chart form.

 

 


It's hot even in Alaska

A twitter user pointed to the following chart, which shows that Alaska has experienced extreme heat this summer, with the July statewide average temperature shattering the previous record;

Alaskaheat

This column chart is clear in its primary message: the red column shows that the average temperature this year is quite a bit higher than the next highest temperature, recorded in July 2004. The error bar is useful for statistically-literate people - the uncertainty is (presumably) due to measurement errors. (If a similar error bar is drawn for the July 2004 column, these bars probably overlap a bit.)

The chart violates one of the rules of making column charts - the vertical axis is truncated at 53F, thus the heights or areas of the columns shouldn't be compared. This violation was recently nominated by two dataviz bloggers when asked about "bad charts" (see here).

Now look at the horizontal axis. These are the years of the top 20 temperature records, ordered from highest to lowest. The months are almost always July except for the year 2004 when all three summer months entered the top 20. I find it hard to make sense of these dates when they are jumping around.

In the following version, I plotted the 20 temperatures on a chronological axis. Color is used to divide the 20 data points into four groups. The chart is meant to be read top to bottom. 

Redo_junkcharts_alaska_heat

 


Two views of earthquake occurrence in the Bay Area

This article has a nice description of earthquake occurrence in the San Francisco Bay Area. A few quantities are of interest: when the next quake occurs, the size of the quake, the epicenter of the quake, etc. The data graphic included in the article fails the self-sufficiency test: the only way to read this chart is to read out the entire data set - in other words, the graphical details have no utility.

Earthquake-probability-chart

The article points out the clustering of earthquakes. In particular, there is a 68-year "quiet period" between 1911 and 1979, during which no quakes over 6.0 in size occurred. The author appears to have classified quakes into three groups: "Largest" which are those at 6.5 or over; "Smaller but damaging" which are those between 6.0 and 6.5; and those below 6.0 (not shown).

For a more standard and more effective visualization of this dataset, see this post on a related chart (about avian flu outbreaks). The post discusses a bubble chart versus a column chart. I prefer the column chart.

image from junkcharts.typepad.com

This chart focuses on the timing of rare events. The time between events is not as easy to see. 

What if we want to focus on the "quiet years" between earthquakes? Here is a visualization that addresses the question: when will the next one hit us?

Redo_jc_earthquakeprobability