Plotting the signal or the noise

Antonio alerted me to the following graphic that appeared in the Economist. This is a playful (?) attempt to draw attention to racism in the game of football (soccer).

The analyst proposed that non-white players have played better in stadiums without fans due to Covid19 in 2020 because they have not been distracted by racist abuse from fans, using Italy's Serie A as the case study.

Econ_seriea_racism

The chart struggles to bring out this finding. There are many lines that criss-cross. The conclusion is primarily based on the two thick lines - which show the average performance with and without fans of white and non-white players. The blue line (non-white) inched to the right (better performance) while the red line (white) shifted slightly to the left.

If the reader wants to understand the chart fully, there's a lot to take in. All (presumably) players are ranked by the performance score from lowest to highest into ten equally sized tiers (known as "deciles"). They are sorted by the 2019 performance when fans were in the stadiums. Each tier is represented by the average performance score of its members. These are the values shown on the top axis labeled "with fans".

Then, with the tiers fixed, the players are rated in 2020 when stadiums were empty. For each tier, an average 2020 performance score is computed, and compared to the 2019 performance score.

The following chart reveals the structure of the data:

Junkcharts_redo_seriea_racism

The players are lined up from left to right, from the worst performers to the best. Each decile is one tenth of the players, and is represented by the average score within the tier. The vertical axis is the actual score while the horizontal axis is a relative ranking - so we expect a positive correlation.

The blue line shows the 2019 (with fans) data, which are used to determine tier membership. The gray dotted line is the 2020 (no fans) data - because they don't decide the ranking, it's possible that the average score of a lower tier (e.g. tier 3 for non-whites) is higher than the average score of a higher tier (e.g. tier 4 for non-whites).

What do we learn from the graphic?

It's very hard to know if the blue and gray lines are different by chance or by whether fans were in the stadium. The maximum gap between the lines is not quite 0.2 on the raw score scale, which is roughly a one-decile shift. It'd be interesting to know the variability of the score of a given player across say 5 seasons prior to 2019. I suspect it could be more than 0.2. In any case, the tiny shifts in the averages (around 0.05) can't be distinguished from noise.

***

This type of analysis is tough to do. Like other observational studies, there are multiple problems of biases and confounding. Fan attendance was not the only thing that changed between 2019 and 2020. The score used to rank players is a "Fantacalcio algorithmic match-level fantasy-football score." It's odd that real-life players should be judged by their fantasy scores rather than their on-the-field performance.

The causal model appears to assume that every non-white player gets racially abused. At least, the analyst didn't look at the curves above and conclude, post-hoc, that players in the third decile are most affected by racial abuse - which is exactly what has happened with the observational studies I have featured on the book blog recently.

Being a Serie A fan, I happen to know non-white players are a small minority so the error bars are wider, which is another issue to think about. I wonder if this factor by itself explains the shifts in those curves. The curve for white players has a much higher sample size thus season-to-season fluctuations are much smaller (regardless of fans or no fans).

 

 

 

 


Reading this chart won't take as long as withdrawing troops from Afghanistan

Art sent me the following Economist chart, noting how hard it is to understand. I took a look, and agreed. It's an example of a visual representation that takes more time to comprehend than the underlying data.

Econ_theendisnear

The chart presents responses to 3 questions on a survey. For each question, the choices are Approve, Disapprove, and "Neither" (just picking a word since I haven't seen the actual survey question). The overall approval/disapproval rates are presented, and then broken into two subgroups (Democrats and Republicans).

The first hurdle is reading the scale. Because the section from 75% to 100% has been removed, we are left with labels 0, 25, 50, 75, which do not say percentages unless we've consumed the title and subtitle. The Economist style guide places the units of data in the subtitle instead of on
the axis itself.

Our attention is drawn to the thick lines, which represent the differences between approval and disapproval rates. These differences are signed: it matters whether the proportion approving is higher or lower than the proportion disapproving. This means the data are encoded in the order of the dots plus the length of the line segment between them.

The two bottom rows of the Afghanistan question demonstrates this mental challenge. Our brains have to process the following visual cues:

1) the two lines are about the same lengths

2) the Republican dots are shifted to the right by a little

3) the colors of the dots are flipped

What do they all mean?

Econ_theendofforever_subset

A chart runs in trouble when you need a paragraph to explain how to read it.

It's sometimes alright to make complicated data visualization that illustrates complicated concepts. What justifies it is the payoff. I wrote about the concept of return on effort in data visualization here.

The payoff for this chart escaped me. Take the Democratic response to troop withdrawal. About 3/4 of Democrats approve while 15% disapprove. The thick line says 60% more Democrats approve than disapprove.

***

Here, I show the full axis, and add a 50% reference line

Junkcharts_redo_econ_theendofforever_1

Small edits but they help visualize "half of", "three quarters of".

***

Next, I switch to the more conventional stacked bars.

Junkcharts_redo_econ_theendofforever_stackedbars

This format reveals some of the hidden data on the chart - the proportion answering neither approve/disapprove, and neither yes/no.

On the stacked bars visual, the proportions are counted from both ends while in the dot plot above, the proportions are measured from the left end only.

***

Read all my posts about Economist charts here

 


On data volume, reliability, uncertainty and confidence bands

This chart from the Economist caught my eye because of the unusual use of color-coded hexagonal tiles.

Economist_lifequalitywealth1

The basic design of the chart is easy to grasp: It relates people's "happiness" to national wealth. The thick black line shows that the average citizen of wealthier countries tends to rate their current life situation better.

For readers alert to graphical details, things can get a little confusing. The horizontal "wealth" axis is shown in log scale, which means that the data on the right side of the chart have been compressed while the data on the left side of the chart have been stretched out. In other words, the curve in linear scale is much flatter than depicted.

Redo_economistlifesatisfaction_linear

One thing you might notice is how poor the fit of the line is at both ends. Singapore and Afghanistan are clearly not explained by the fitted line. (That said, the line is based on many more dots than those eight we can see.) Moreover, because countries are widely spread out on the high end of the wealth axis, the fit is not impressive. Log scales tend to give a false impression of the tightness of fit, as I explained before when discussing coronavirus case curves.

***

The hexagonal tiles replace the more typical dot scatter or contour shading. The raw data consist of results from polls conducted in different countries in different years. For each poll, the analyst computes the average life satisfaction score for that country in that year. From national statistics, the analyst pulls out that country's GDP per capita in that year. Thus, each data point is a dot on the canvass. A few data points are shown as black dots. Those are for eight highlighted countries for the year 2018.

The black line is fitted to the underlying dot scatter and summarizes the correlation between average wealth and average life satisfaction. Instead of showing the scatter, this Economist design aggregates nearby dots into hexagons. The deepest red hexagon, sandwiched between Finland and the US, contains about 60-70 dots, according to the color legend.

These details are tough to take in. It's not clear which dots have been collected into that hexagon: are they all Finland or the U.S. in various years, or do they include other countries? Each country is represented by multiple dots, one for each poll year. It's also not clear how much variation there exists within a country across years.

***

The hexagonal tiles presumably serve the same role as a dot scatter or contour shading. They convey the amount of data supporting the fitted curve along its trajectory. More data confers more reliability.

For this chart, the hexagonal tiles do not add any value. The deepest red regions are those closest to the black line so nothing is actually lost by showing just the line and not the tiles.

Redo_economistlifesatisfaction_nohex

Using the line chart obviates the need for readers to figure out the hexagons, the polls, the aggregation, and the inevitable unanswered questions.

***

An alternative concept is to show the "confidence band" or "error bar" around the black line. These bars display the uncertainty of the data. The wider the band, the less certain the analyst is of the estimate. Typically, the band expands near the edges where we have less data.

Here is conceptually what we should see (I don't have the underlying dataset so can't compute the confidence band precisely)

Redo_economistlifesatisfaction_confband

The confidence band picture is the mirror image of the hexagonal tiles. Where the poll density is high, the confidence band narrows, and where poll density is low, the band expands.

A simple way to interpret the confidence band is to find the country's wealth on the horizontal axis, and look at the range of life satisfaction rating for that value of wealth. Now pick any number between the range, and imagine that you've just conducted a survey and computed the average rating. That number you picked is a possible survey result, and thus a valid value. (For those who know some probability, you should pick a number not at random within the range but in accordance with a Bell curve, meaning picking a number closer to the fitted line with much higher probability than a number at either edge.)

Visualizing data involves a series of choices. For this dataset, one such choice is displaying data density or uncertainty or neither.


This chart shows why the PR agency for the UK government deserves a Covid-19 bonus

The Economist illustrated some interesting consumer research with this chart (link):

Economist_covidpoll

The survey by Dalia Research asked people about the satisfaction with their country's response to the coronavirus crisis. The results are reduced to the "Top 2 Boxes", the proportion of people who rated their government response as "very well" or "somewhat well".

This dimension is laid out along the horizontal axis. The chart is a combo dot and bubble chart, arranged in rows by region of the world. Now what does the bubble size indicate?

It took me a while to find the legend as I was expecting it either in the header or the footer of the graphic. A larger bubble depicts a higher cumulative number of deaths up to June 15, 2020.

The key issue is the correlation between a country's death count and the people's evaluation of the government response.

Bivariate correlation is typically shown on a scatter plot. The following chart sets out the scatter plots in a small multiples format with each panel displaying a region of the world.

Redo_economistcovidpolling_scatter

The death tolls in the Asian countries are low relative to the other regions, and yet the people's ratings vary widely. In particular, the Japanese people are pretty hard on their government.

In Europe, the people of Greece, Netherlands and Germany think highly of their government responses, which have suppressed deaths. The French, Spaniards and Italians are understandably unhappy. The British appears to be the most forgiving of their government, despite suffering a higher death toll than France, Spain or Italy. This speaks well of their PR operation.

Cumulative deaths should be adjusted by population size for a proper comparison across nations. When the same graphic is produced using deaths per million (shown on the right below), the general story is preserved while the pattern is clarified:

Redo_economistcovidpolling_deathspermillion_2

The right chart shows deaths per million while the left chart shows total deaths.

***

In the original Economist chart, what catches our attention first is the bubble size. Eventually, we notice the horizontal positioning of these bubbles. But the star of this chart ought to be the new survey data. I swapped those variables and obtained the following graphic:

Redo_economistcovidpolling_swappedvar

Instead of using bubble size, I switched to using color to illustrate the deaths-per-million metric. If ratings of the pandemic response correlate tightly with deaths per million, then we expect the color of these dots to evolve from blue on the left side to red on the right side.

The peculiar loss of correlation in the U.K. stands out. Their PR firm deserves a bonus!


Taking small steps to bring out the message

Happy new year! Good luck and best wishes!

***

We'll start 2020 with something lighter. On a recent flight, I saw a chart in The Economist that shows the proportion of operating income derived from overseas markets by major grocery chains - the headline said that some of these chains are withdrawing from international markets.

Econ_internationalgroceries_sm

The designer used one color for each grocery chain, and two shades within each color. The legend describes the shades as "total" and "of which: overseas". As with all stacked bar charts, it's a bit confusing where to find the data. The "total" is actually the entire bar, not just the darker shaded part. The darker shaded part is better labeled "home market" as shown below:

Redo_econgroceriesintl_1

The designer's instinct to bring out the importance of international markets to each company's income is well placed. A second small edit helps: plot the international income amounts first, so they line up with the vertical zero axis. Like this:

Redo_econgroceriesintl_2

This is essentially the same chart. The order of international and home market is reversed. I also reversed the shading, so that the international share of income is displayed darker. This shading draws the readers' attention to the key message of the chart.

A stacked bar chart of the absolute dollar amounts is not ideal for showing proportions, because each bar is a different length. Sometimes, plotting relative values summing to 100% for each company may work better.

As it stands, the chart above calls attention to a different message: that Walmart dwarfs the other three global chains. Just the international income of Walmart is larger than the total income of Costco.

***

Please comment below or write me directly if you have ideas for this blog as we enter a new decade. What do you want to see more of? less of?


The rule governing which variable to put on which axis, served a la mode

When making a scatter plot, the two variables should not be placed arbitrarily. There is a rule governing this: the outcome variable should be shown on the vertical axis (also called y-axis), and the explanatory variable on the horizontal (or x-) axis.

This chart from the archives of the Economist has this reversed:

20160402_WOC883_icecream_PISA

The title of the accompanying article is "Ice Cream and IQ"...

In a Trifecta Checkup (link), it's a Type DV chart. It's preposterous to claim eating ice cream makes one smarter without more careful studies. The chart also carries the xyopia fallacy: by showing just two variables, readers are unwittingly led to explain differences in "IQ" using differences in per-capita ice-cream consumption when lots of other stronger variables will explain any gaps in IQ.

In this post, I put aside my objections to the analysis, and focus on the issue of assigning variables to axes. Notice that this chart reverses the convention: the outcome variable (IQ) is shown on the horizontal, and the explanatory variable (ice cream) is shown on the vertical.

Here is a reconstruction of the above chart, showing only the dots that were labeled with country names. I fitted a straight regression line instead of a curve. (I don't understand why the red line in the original chart bends upwards when the data for Japan, South Korea, Singapore and Hong Kong should be dragging it down.)

Redo_econ_icecreamIQ_1A

Note that the interpretation of the regression line raises eyebrows because the presumed causality is reversed. For each 50 points increase in PISA score (IQ), this line says to expect ice cream consumption to raise by about 1-2 liters per person per year. So higher IQ makes people eat more ice cream.

***

If the convention is respected, then the following scatter plot results:

Redo_econ_icecreamIQ_2

The first thing to note is that the regression analysis is different here from that shown in the previous chart. The blue regression line is not equivalent to the black regression line from the previous chart. You cannot reverse the roles of the x and y variables in a regression analysis, and so neither should you reverse the roles of the x and y variables in a scatter plot.

The blue regression line can be interpreted as having two sections, roughly, for countries consuming more than or less than 6 liters of ice cream per person per year. In the less-ice-cream countries, the correlation between ice cream and IQ is stronger (I don't endorse the causal interpretation of this statement).

***

When you make a scatter plot, you have two variables for which you want to analyze their correlation. In most cases, you are exploring a cause-effect relationship.

Higher income households cares more on politics.
Less educated citizens are more likely to not register to vote.
Companies with more diverse workforce has better business performance.

Frequently, the reverse correlation does not admit a causal interpretation:

Caring more about politics does not make one richer.
Not registering to vote does not make one less educated.
Making more profits does not lead to more diversity in hiring.

In each of these examples, it's clear that one variable is the outcome, the other variable is the explanatory factor. Always put the outcome in the vertical axis, and the explanation in the horizontal axis.

The justification is scientific. If you are going to add a regression line (what Excel calls a "trendline"), you must follow this convention, otherwise, your regression analysis will yield the wrong result, with an absurd interpretation!

 

[PS. 11/3/2019: The comments below contain different theories that link the two variables, including theories that treat PISA score ("IQ") as the explanatory variable and ice cream consumption as the outcome. Also, I elaborated that the rule does not dictate which variable is the outcome - the designer effectively signals to the reader which variable is regarded as the outcome by placing it in the vertical axis.]


Pulling the multi-national story out, step by step

Reader Aleksander B. found this Economist chart difficult to understand.

Redo_multinat_1

Given the chart title, the reader is looking for a story about multinationals producing lower return on equity than local firms. The first item displayed indicates that multinationals out-performed local firms in the technology sector.

The pie charts on the right column provide additional information about the share of each sector by the type of firms. Is there a correlation between the share of multinationals, and their performance differential relative to local firms?

***

We can clean up the presentation. The first changes include using dots in place of pipes, removing the vertical gridlines, and pushing the zero line to the background:

Redo_multinat_2

The horizontal gridlines attached to the zero line can also be removed:

Redo_multinat_3

Now, we re-order the rows. Start with the aggregate "All sectors". Then, order sectors from the largest under-performance by multinationals to the smallest.

Redo_multinat_4

The pie charts focus only on the share of multinationals. Taking away the remainders speeds up our perception:

Redo_multinat_5

Help the reader understand the data by dividing the sectors into groups, organized by the performance differential:

Redo_multinat_6

For what it's worth, re-sort the sectors from largest to smallest share of multinationals:

Redo_multinat_7

Having created groups of sectors by share of multinationals, I simplify further by showing the average pie chart within each group:

Redo_multinat_8

***

To recap all the edits, here is an animated gif: (if it doesn't play automatically, click on it)

Redo_junkcharts_econmultinat

***

Judging from the last graphic, I am not sure there is much correlation between share of multinationals and the performance differentials. It's interesting that in aggregate, local firms and multinationals performed the same. The average hides the variability by sector: in some sectors, local firms out-performed multinationals, as the original chart title asserted.


Five steps to let the young ones shine

Knife stabbings are in the news in the U.K. and the Economist has a quartet of charts to illustrate what's going on.

Economist_20190309_WOC479

I'm going to focus on the chart on the bottom right. This shows the trend in hospital admissions due to stabbings in England from 2000 to 2018. The three lines show all ages, and two specific age groups: under 16 and 16-18.

The first edit I made was to spell out all years in four digits. For this chart, numbers like 15 and 18 can be confused with ages.

Redo_econ_ukknives_1

The next edit corrects an error in the subtitle. The reference year is not 2010 as those three lines don't cross 100. It appears that the reference year is 2000. Another reason to use four-digit years on the horizontal axis is to be consistent with the subtitle.

Redo_econ_ukknives_2

The next edit removes the black dot which draws attention to itself. The chart though is not about the year 2000, which has the least information since all data have been forced to 100.

Redo_econ_ukknives_3

The next edit makes the vertical axis easier to interpret. The indices 150, 200, are much better stated as + 50%, + 100%. The red line can be labeled "at 2000 level". One can even remove the subtitle 2000=100 if desired.

Redo_econ_ukknives_4

Finally, I surmise the message the designer wants to get across is the above-average jump in hospital admissions among children under 16 and 16 to 18. Therefore, the "All" line exists to provide context. Thus, I made it a dashed line pushing it to the background.

Redo_econ_ukknives_5

 

 

 


Big Macs in Switzerland are amazing, according to my friend

Bigmac_chNote for those in or near Zurich: I'm giving a Keynote Speech tomorrow morning at the Swiss Statistics Meeting (link). Here is the abstract:

The best and the worst of data visualization share something in common: these graphics provoke emotions. In this talk, I connect the emotional response of readers of data graphics to the design choices made by their creators. Using a plethora of examples, collected over a dozen years of writing online dataviz criticism, I discuss how some design choices generate negative emotions such as confusion and disbelief while other choices elicit positive feelings including pleasure and eureka. Important design choices include how much data to show; which data to highlight, hide or smudge; what research question to address; whether to introduce imagery, or playfulness; and so on. Examples extend from graphics in print, to online interactive graphics, to visual experiences in society.

***

The Big Mac index seems to never want to go away. Here is the latest graphic from the Economist, saying what it says:

Econ_bigmacindex

The index never made much sense to me. I'm in Switzerland, and everything here is expensive. My friend, who is a U.S. transplant, seems to have adopted McDonald's as his main eating-out venue. Online reviews indicate that the quality of the burger served in Switzerland is much better than the same thing in the States. So, part of the price differential can be explained by quality. The index also confounds several other issues, such as local inflation and exchange rate

Now, on to the data visualization, which is primarily an exercise in rolling one's eyeballs. In order to understand the red and blue line segments, our eyes have to hop over the price bubbles to the top of the page. Then, in order to understand the vertical axis labels, unconventionally placed on the right side, our eyes have to zoom over to the left of the page, and search for the line below the header of the graph. Next, if we want to know about a particular country, our eyes must turn sideways and scan from bottom up.

Here is a different take on the same data:

Redo_jc_econbigmac2018

I transformed the data as I don't find it compelling to learn that Russian Big Macs are 60% less than American Big Macs. Instead, on my chart, the reader learns that the price paid for a U.S. Big Mac will buy him/her almost 2 and a half Big Macs in Russia.

The arrows pointing left indicate that in most countries, the values of their currencies are declining relative to the dollar from 2017 to 2018 (at least by the Big Mac Index point of view). The only exception is Turkey, where in 2018, one can buy more Big Macs equivalent to the price paid for one U.S. Big Mac. compared to 2017.

The decimal differences are immaterial so I have grouped the countries by half Big Macs.

This example demonstrates yet again, to make good data visualization, one has to describe an interesting question, make appropriate transformations of the data, and then choose the right visual form. I describe this framework as the Trifecta - a guide to it is here.

(P.S. I noticed that Bitly just decided unilaterally to deactivate my customized Bitly link that was configured years and years ago, when it switched design (?). So I had to re-create the custom link. I have never grasped  why "unreliability" is a feature of the offering by most Tech companies.)