Graphing the economic crisis of coronavirus 2

Last week, I discussed Ray's chart that compares the S&P 500 performance in this crisis against previous crises.

A reminder:

Tcb_stockmarketindices_fourcrises

Another useful feature is the halo around the right edge of the COVID-19 line. This device directs our eyes to where he wants us to look.

In the same series, he made the following for The Conference Board (link):

TCB-COVID-19-impact-oil-prices-640

Two things I learned from this chart:

The oil market takes a much longer time to recover after crises, compared to the S&P. None of these lines reached above 100 in the first 150 days (5 months).

Just like the S&P, the current crisis is most similar in severity to the 2008 Great Recession, only worse, and currently, the price collapse in oil is quite a bit worse than in 2008.

***
The drop of oil is going to be contentious. This is a drop too many for a Tufte purist. It might as well symbolize a tear shed.

The presence of the icon tells me these lines depict the oil market without having to read text. And I approve.


More visuals of the economic crisis

As we move into the next phase of the dataviz bonanza arising from the coronavirus pandemic, we will see a shift from simple descriptive graphics of infections and deaths to bivariate explanatory graphics claiming (usually spurious) correlations.

The FT is leading the way with this effort, and I hope all those who follow will make a note of several wise decisions they made.

  • They source their data. Most of the data about business activities come from private entities, many of which are data vendors who make money selling the data. In this article, FT got restaurant data from OpenTable, retail foot traffic data from Springboard, box office data from Box Office Mojo, flight data from Flightradar24, road traffic data from TomTom, and energy use data from European Network of Transmission System Operators for Electricity.
  • They generally let the data and charts speak without "story time". The text primarily describes the trends of the various data series.
  • They selected sectors that are obviously impacted by the shutdowns so any link between the observed trends and the crisis is plausible.

The FT charts are examples of clarity. Here is the one about road traffic patterns in major cities:

Ft_roadusage_corona_wrongsource

The cities are organized into regions: Europe, US, China, other Asia.

The key comparison is the last seven days versus the historical averages. The stories practically jump out of the page. Traffic in Paris collapsed on Tuesday. Wuhan is still locked down despite the falloff in infections. Drivers of Tokyo are probably wondering why teams are not going to the Olympics this year. Londoners? My guess is they're determined to not let another Brexit deadline slip.

***

I'd hope we go even further than FT when publishing this type of visual analytics involving "Big Data." These business data obtained from private sources typically have OCCAM properties: they are observational, seemingly complete, uncontrolled, adapted and merged. All these properties make the data very challenging to interpret.

The coronavirus case and death counts are simple by comparison. People are now aware of all the problems from differential rates of testing to which groups are selectively tested (i.e. triage) to how an infection or death is defined. The problems involving Big Data are much more complex.

I have three additional proposals:

Disclosure of Biases and Limitations

The private data have many more potential pitfalls. Take OpenTable data for example. The data measure restaurant bookings, not revenues. It measures gross bookings, not net bookings (i.e. removing no-shows). Only a proportion of restaurants use OpenTable (which cost owners money). OpenTable does not strike me as a quasi-monopoly so there are competitors with significant market share. The restaurants that use OpenTable do not form a random subsample of all restaurants. One of the most popular restaurants in the U.S. are pizza joints, with little of no seating, which do not feature in the bookings data. OpenTable also has differential popularity by country, region, or probably cuisine. 

I believe data journalists ought to provide such context in a footnote. Readers should have the information to judge whether they believe the data are sufficiently representative. Private data vendors who want data journalists to feature their datasets should be required to supply a footnote that describes the biases and limitations of their data.

Data journalists should think seriously about how they headline this type of chart. The standard practice is what FT adopted. The headline said "Restaurant bookings have collapsed" with a small footnote saying "Source: OpenTable". Should the headline have said "OpenTable bookings have collapsed" instead?

Disclosure of Definitions and Proxies

In the road traffic chart shown above, the metric is called "TomTom traffic congestion index". In order to earn this free advertising (euphemistically called "earned media" by industry), TomTom should be obliged to explain how this index is constructed. What does index = 100 mean?

[For example, it is curious that the Madrid index values are much lower across the board than those in Paris and Roma.]

For the electric usage chart, FT discloses the name of the data provider as a group of "43 electricity transmission system operators in 36 countries across Europe." Now, that is important context but can be better. The group may consist of 43 operators but how many of them are in the dataset? What proportion of the total electric usage do they account for in each country? If they have low penetration in a particular country, do they just report the low statistics or adjust the numbres?

If the journalist decides to use a proxy, for example, OpenTable restaurant bookings to reflect restaurant revenues, that should be explained, perhaps even justified.

Data as a Public Good

If private businesses choose to supply data to media outlets as a public service, they should allow the underlying data to be published.

Speaking from experience, I've seen a lot of bad data. It's one thing to hold your nose when the data are analyzed to make online advertising more profitable, or to find signals to profit from the stock market. It's another thing for the data analysis to drive public policy, in this case, policies that will have life-or-death implications.


Food coma and self-sufficiency in dataviz

The Hustle wrote a strong analysis of the business of buffets. If you've read my analysis of Groupon's business model in Numbersense (link), you'll find some similarities. A key is to not think of every customer as an average customer; there are segments of customers who behave differently, and creating a proper mix of different types of customers is the management's challenge. I will make further comments on the statistics in a future post on the sister blog.

At Junk Charts, we'll focus on visualizing and communciating data. The article in The Hustle comes with the following dataviz:

Hustle_buffetcost

This dataviz fails my self-sufficiency test. Recall: self-sufficiency is a basic requirement of visualizing data - that the graphical elements should be sufficient to convey the gist of the data. Otherwise, there is no point in augmenting the data with graphical elements.

The self-sufficiency test is to remove the dataset from the dataviz, and ask whether the graphic can stand on its own. So here:

Redo_hustlebuffetcost_selfsufficiency

The entire set of ingredient costs appears on the original graphic. When these numbers are removed, the reader gets the wrong message - that the cost is equally split between these five ingredients.

This chart reminds me of the pizza chart that everyone thought was a pie chart except its designer! I wrote about it here. Food coma is a thing.

The original chart may be regarded as an illustration rather than data visualization. If so, it's just a few steps from becoming a dataviz. Like this:

Redo_hustlebuffetcost

P.S. A preview of what I'll be talking about at the sister blog. The above diagram illustrates the average case - for the average buffet diner. Underneath these costs is an assumption about the relative amounts of each food that is eaten. But eaten by whom?

Also, if you have Numbersense (link), the chapter on measuring the inflation rate is relevant here. Any inflation metric must assume a basket of goods, but then the goods within the basket have to be weighted by the amount of expenditure. It's much harder to get the ratio of expenditures correct compared to getting price data.

 

 


Bubble charts, ratios and proportionality

A recent article in the Wall Street Journal about a challenger to the dominant weedkiller, Roundup, contains a nice selection of graphics. (Dicamba is the up-and-comer.)

Wsj_roundup_img1


The change in usage of three brands of weedkillers is rendered as a small-multiples of choropleth maps. This graphic displays geographical and time changes simultaneously.

The staircase chart shows weeds have become resistant to Roundup over time. This is considered a weakness in the Roundup business.

***

In this post, my focus is on the chart at the bottom, which shows complaints about Dicamba by state in 2019. This is a bubble chart, with the bubbles sorted along the horizontal axis by the acreage of farmland by state.

Wsj_roundup_img2

Below left is a more standard version of such a chart, in which the bubbles are allowed to overlap. (I only included the bubbles that were labeled in the original chart).

Redo_roundupwsj0

The WSJ’s twist is to use the vertical spacing to avoid overlapping bubbles. The vertical axis serves a design perogative and does not encode data.  

I’m going to stick with the more traditional overlapping bubbles here – I’m getting to a different matter.

***

The question being addressed by this chart is: which states have the most serious Dicamba problem, as revealed by the frequency of complaints? The designer recognizes that the amount of farmland matters. One should expect the more acres, the more complaints.

Let's consider computing directly the number of complaints per million acres.

The resulting chart (shown below right) – while retaining the design – gives a wholly different feeling. Arkansas now owns the largest bubble even though it has the least acreage among the included states. The huge Illinois bubble is still large but is no longer a loner.

Redo_dicambacomplaints1

Now return to the original design for a moment (the chart on the left). In theory, this should work in the following manner: if complaints grow purely as a function of acreage, then the bubbles should grow proportionally from left to right. The trouble is that proportional areas are not as easily detected as proportional lengths.

The pair of charts below depict made-up data in which all states have 30 complaints for each million acres of farmland. It’s not intuitive that the bubbles on the left chart are growing proportionally.

Redo_dicambacomplaints2

Now if you look at the right chart, which shows the relative metric of complaints per million acres, it’s impossible not to notice that all bubbles are the same size.


Taking small steps to bring out the message

Happy new year! Good luck and best wishes!

***

We'll start 2020 with something lighter. On a recent flight, I saw a chart in The Economist that shows the proportion of operating income derived from overseas markets by major grocery chains - the headline said that some of these chains are withdrawing from international markets.

Econ_internationalgroceries_sm

The designer used one color for each grocery chain, and two shades within each color. The legend describes the shades as "total" and "of which: overseas". As with all stacked bar charts, it's a bit confusing where to find the data. The "total" is actually the entire bar, not just the darker shaded part. The darker shaded part is better labeled "home market" as shown below:

Redo_econgroceriesintl_1

The designer's instinct to bring out the importance of international markets to each company's income is well placed. A second small edit helps: plot the international income amounts first, so they line up with the vertical zero axis. Like this:

Redo_econgroceriesintl_2

This is essentially the same chart. The order of international and home market is reversed. I also reversed the shading, so that the international share of income is displayed darker. This shading draws the readers' attention to the key message of the chart.

A stacked bar chart of the absolute dollar amounts is not ideal for showing proportions, because each bar is a different length. Sometimes, plotting relative values summing to 100% for each company may work better.

As it stands, the chart above calls attention to a different message: that Walmart dwarfs the other three global chains. Just the international income of Walmart is larger than the total income of Costco.

***

Please comment below or write me directly if you have ideas for this blog as we enter a new decade. What do you want to see more of? less of?


All these charts lament the high prices charged by U.S. hospitals

Nyt_medicalprocedureprices

A former student asked me about this chart from the New York Times that highlights much higher prices of hospital procedures in the U.S. relative to a comparison group of seven countries.

The dot plot is clearly thought through. It is not a default chart that pops out of software.

Based on its design, we surmise that the designer has the following intentions:

  1. The names of the medical procedures are printed to be read, thus the long text is placed horizontally.

  2. The actual price is not as important as the relative price, expressed as an index with the U.S. price at 100%. These reference values are printed in glaring red, unignorable.

  3. Notwithstanding the above point, the actual price is still of secondary importance, and the values are provided as a supplement to the row labels. Getting to the actual prices in the comparison countries requires further effort, and a calculator.

  4. The primary comparison is between the U.S. and the rest of the world (or the group of seven countries included). It is less important to distinguish specific countries in the comparison group, and thus the non-U.S. dots are given pastels that take some effort to differentiate.

  5. Probably due to reader feedback, the font size is subject to a minimum so that some labels are split into two lines to prevent the text from dominating the plotting region.

***

In the Trifecta Checkup view of the world, there is no single best design. The best design depends on the intended message and what’s in the available data.

To illustate this, I will present a few variants of the above design, and discuss how these alternative designs reflect the designer's intentions.

Note that in all my charts, I expressed the relative price in terms of discounts, which is the mirror image of premiums. Instead of saying Country A's price is 80% of the U.S. price, I prefer to say Country A's price is a 20% saving (or discount) off the U.S. price.

First up is the following chart that emphasizes countries instead of hospital procedures:

Redo_medicalprice_hor_dot

This chart encourages readers to draw conclusions such as "Hospital prices are 60-80 percent cheaper in Holland relative to the U.S." But it is more taxing to compare the cost of a specific procedure across countries.

The indexing strategy already creates a barrier to understanding relative costs of a specific procedure. For example, the value for angioplasty in Australia is about 55% and in Switzerland, about 75%. The difference 75%-55% is meaningless because both numbers are relative savings from the U.S. baseline. Comparing Australia and Switzerland requires a ratio (0.75/0.55 = 1.36): Australia's prices are 36% above Swiss prices, or alternatively, Swiss prices are a 64% 26% discount off Australia's prices.

The following design takes it even further, excluding details of individual procedures:

Redo_medicalprice_hor_bar

For some readers, less is more. It’s even easier to get a rough estimate of how much cheaper prices are in the comparison countries, for now, except for two “outliers”, the chart does not display individual values.

The widths of these bars reveal that in some countries, the amount of savings depends on the specific procedures.

The bar design releases the designer from a horizontal orientation. The country labels are shorter and can be placed at the bottom in a vertical design:

Redo_medicalprice_vert_bar

It's not that one design is obviously superior to the others. Each version does some things better. A good designer recognizes the strengths and weaknesses of each design, and selects one to fulfil his/her intentions.

 

P.S. [1/3/20] Corrected a computation, explained in Ken's comment.


Revisiting global car sales

We looked at the following chart in the previous blog. The data concern the growth rates of car sales in different regions of the world over time.

Cnbc zh global car sales

Here is a different visualization of the same data.

Redo_cnbc_globalcarsales

Well, it's not quite the same data. I divided the global average growth rate by four to yield an approximation of the true global average. (The reason for this is explained in the other day's post.)

The chart emphasizes how each region was helping or hurting the global growth. It also features the trend in growth within each region.

 


This Excel chart looks standard but gets everything wrong

The following CNBC chart (link) shows the trend of global car sales by region (or so we think).

Cnbc zh global car sales

This type of chart is quite common in finance/business circles, and has the fingerprint of Excel. After examining it, I nominate it for the Hall of Shame.

***

The chart has three major components vying for our attention: (1) the stacked columns, (2) the yellow line, and (3) the big red dashed arrow.

The easiest to interpret is the yellow line, which is labeled "Total" in the legend. It displays the annual growth rate of car sales around the globe. The data consist of annual percentage changes in car sales, so the slope of the yellow line represents a change of change, which is not particularly useful.

The big red arrow is making the point that the projected decline in global car sales in 2019 will return the world to the slowdown of 2008-9 after almost a decade of growth.

The stacked columns appear to provide a breakdown of the global growth rate by region. Looked at carefully, you'll soon learn that the visual form has hopelessly mangled the data.

Cnbc_globalcarsales_2006

What is the growth rate for Chinese car sales in 2006? Is it 2.5%, the top edge of China's part of the column? Between 1.5% and 2.5%, the extant of China's section? The answer is neither. Because of the stacking, China's growth rate is actually the height of the relevant section, that is to say, 1 percent. So the labels on the vertical axis are not directly useful to learning regional growth rates for most sections of the chart.

Can we read the vertical axis as global growth rate? That's not proper either. The different markets are not equal in size so growth rates cannot be aggregated by simple summing - they must be weighted by relative size.

The negative growth rates present another problem. Even if we agree to sum growth rates ignoring relative market sizes, we still can't get directly to the global growth rate. We would have to take the total of the positive rates and subtract the total of the negative rates.  

***

At this point, you may begin to question everything you thought you knew about this chart. Remember the yellow line, which we thought measures the global growth rate. Take a look at the 2006 column again.

The global growth rate is depicted as 2 percent. And yet every region experienced growth rates below 2 percent! No matter how you aggregate the regions, it's not possible for the world average to be larger than the value of each region.

For 2006, the regional growth rates are: China, 1%; Rest of the World, 1%; Western Europe, 0.1%; United States, -0.25%. A simple sum of those four rates yields 2%, which is shown on the yellow line.

But this number must be divided by four. If we give the four regions equal weight, each is worth a quarter of the total. So the overall average is the sum of each growth rate weighted by 1/4, which is 0.5%. [In reality, the weights of each region should be scaled to reflect its market size.]

***

tldr; The stacked column chart with a line overlay not only fails to communicate the contents of the car sales data but it also leads to misinterpretation.

I discussed several serious problems of this chart form: 

  • stacking the columns make it hard to learn the regional data

  • the trend by region takes a super effort to decipher

  • column stacking promotes reading meaning into the height of the column but the total height is meaningless (because of the negative section) while the net height (positive minus negative) also misleads due to presumptive equal weighting

  • the yellow line shows the sum of the regional data, which is four times the global growth rate that it purports to represent

 

***

PS. [12/4/2019: New post up with a different visualization.]


This chart tells you how rich is rich - if you can read it

Via twitter, John B. sent me the following YouGov chart (link) that he finds difficult to read:

Yougov_whoisrich

The title is clear enough: the higher your income, the higher you set the bar.

When one then moves from the title to the chart, one gets misdirected. The horizontal axis shows pound values, so the axis naturally maps to "the higher your income". But it doesn't. Those pound values are the "cutoff" values - the line between "rich" and "not rich". Even after one realizes this detail, the axis  presents further challenges: the cutoff values are arbitrary numbers such as "45,001" sterling; and these continuous numbers are treated as discrete categories, with irregular intervals between each category.

There is some very interesting and hard to obtain data sitting behind this chart but the visual form suppresses them. The best way to understand this dataset is to first think about each income group. Say, people who make between 20 to 30 thousand sterling a year. Roughly 10% of these people think "rich" starts at 25,000. Forty percent of this income group think "rich" start at 40,000.

For each income group, we have data on Z percent think "rich" starts at X. I put all of these data points into a heatmap, like this:

Redo_junkcharts_yougovuk_whoisrich

Technical note: in order to restore the horizontal axis to a continuous scale, you can take the discrete data from the original chart, then fit a smoothed curve through those points, and finally compute the interpolated values for any income level using the smoothing model.

***

There are some concerns about the survey design. It's hard to get enough samples for higher-income people. This is probably why the highest income segment starts at 50,000. But notice that 50,ooo is around the level at which lower-income people consider "rich". So, this survey is primarily about how low-income people perceive "rich" people.

The curve for the highest income group is much straighter and smoother than the other lines - that's because it's really the average of a number of curves (for each 10,000 sterling segment).

 

P.S. The YouGov tweet that publicized the small-multiples chart shown above links to a page that no longer contains the chart. They may have replaced it due to feedback.

 

 


How to read this cost-benefit chart, and why it is so confusing

Long-time reader Antonio R. found today's chart hard to follow, and he isn't alone. It took two of us multiple emails and some Web searching before we think we "got it".

Ar_submit_Fig-3-2-The-policy-cost-curve-525

 

Antonio first encountered the chart in a book review (link) of Hal Harvey et. al, Designing Climate Solutions. It addresses the general topic of costs and benefits of various programs to abate CO2 emissions. The reviewer praised the "wealth of graphics [in the book] which present complex information in visually effective formats." He presented the above chart as evidence, and described its function as:

policy-makers can focus on the areas which make the most difference in emissions, while also being mindful of the cost issues that can be so important in getting political buy-in.

(This description is much more informative than the original chart title, which states "The policy cost curve shows the cost-effectiveness and emission reduction potential of different policies.")

Spend a little time with the chart now before you read the discussion below.

Warning: this is a long read but well worth it.

 

***

 

If your experience is anything like ours, scraps of information flew at you from different parts of the chart, and you had a hard time piecing together a story.

What are the reasons why this data graphic is so confusing?

Everyone recognizes that this is a column chart. For a column chart, we interpret the heights of the columns so we look first at the vertical axis. The axis title informs us that the height represents "cost effectiveness" measured in dollars per million metric tons of CO2. In a cost-benefit sense, that appears to mean the cost to society of obtaining the benefit of reducing CO2 by a given amount.

That's how far I went before hitting the first roadblock.

For environmental policies, opponents frequently object to the high price of implementation. For example, we can't have higher fuel efficiency in cars because it would raise the price of gasoline too much. Asking about cost-effectiveness makes sense: a cost-benefit trade-off analysis encapsulates the something-for-something principle. What doesn't follow is that the vertical scale sinks far into the negative. The chart depicts the majority of the emissions abatement programs as having negative cost effectiveness.

What does it mean to be negatively cost-effective? Does it mean society saves money (makes a profit) while also reducing CO2 emissions? Wouldn't those policies - more than half of the programs shown - be slam dunks? Who can object to programs that improve the environment at no cost?

I tabled that thought, and proceeded to the horizontal axis.

I noticed that this isn't a standard column chart, in which the width of the columns is fixed and uneventful. Here, the widths of the columns are varying.

***

In the meantime, my eyes are distracted by the constellation of text labels. The viewing area of this column chart is occupied - at least 50% - by text. These labels tell me that each column represents a program to reduce CO2 emissions.

The dominance of text labels is a feature of this design. For a conventional column chart, the labels are situated below each column. Since the width does not usually carry any data, we tend to keep the columns narrow - Tufte, ever the minimalist, has even advocated reducing columns to vertical lines. That leaves insufficient room for long labels. Have you noticed that government programs hold long titles? It's tough to capture even the outline of a program with fewer than three big words, e.g. "Renewable Portfolio Standard" (what?).

The design solution here is to let the column labels run horizontally. So the graphical element for each program is a vertical column coupled with a horizontal label that invades the territories of the next few programs. Like this:

Redo_fueleconomystandardscars

The horror of this design constraint is fully realized in the following chart, a similar design produced for the state of Oregon (lifted from the Plan Washington webpage listed as a resource below):

Figure 2 oregon greenhouse

In a re-design, horizontal labeling should be a priority.

 

***

Realizing that I've been distracted by the text labels, back to the horizontal axis I went.

This is where I encountered the next roadblock.

The axis title says "Average Annual Emissions Abatement" measured in millions metric tons. The unit matches the second part of the vertical scale, which is comforting. But how does one reconcile the widths of columns with a continuous scale? I was expecting each program to have a projected annual abatement benefit, and those would fall as dots on a line, like this:

Redo_abatement_benefit_dotplot

Instead, we have line segments sitting on a line, like this:

Redo_abatement_benefit_bars_end2end_annuallabel

Think of these bars as the bottom edges of the columns. These line segments can be better compared to each other if structured as a bar chart:

Redo_abatement_benefit_bars

Instead, the design arranges these lines end-to-end.

To unravel this mystery, we go back to the objective of the chart, as announced by the book reviewer. Here it is again:

policy-makers can focus on the areas which make the most difference in emissions, while also being mindful of the cost issues that can be so important in getting political buy-in.

The primary goal of the chart is a decision-making tool for policy-makers who are evaluating programs. Each program has a cost and also a benefit. The cost is shown on the vertical axis and the benefit is shown on the horizontal. The decision-maker will select some subset of these programs based on the cost-benefit analysis. That subset of programs will have a projected total expected benefit (CO2 abatement) and a projected total cost.

By stacking the line segments end to end on top of the horizontal axis, the chart designer elevates the task of computing the total benefits of a subset of programs, relative to the task of learning the benefits of any individual program. Thus, the horizontal axis is better labeled "Cumulative annual emissions abatement".

 

Look at that axis again. Imagine you are required to learn the specific benefit of program titled "Fuel Economy Standards: Cars & SUVs".  

Redo_abatement_benefit_bars_end2end_cumlabel

This is impossible to do without pulling out a ruler and a calculator. What the axis labels do tell us is that if all the programs to the left of Fuel Economy Standards: Cars & SUVs were adopted, the cumulative benefits would be 285 million metric tons of CO2 per year. And if Fuel Economy Standards: Cars & SUVs were also implemented, the cumulative benefits would rise to 375 million metric tons.

***

At long last, we have arrived at a reasonable interpretation of the cost-benefit chart.

Policy-makers are considering throwing their support behind specific programs aimed at abating CO2 emissions. Different organizations have come up with different ways to achieve this goal. This goal may even have specific benchmarks; the government may have committed to an international agreement, for example, to reduce emissions by some set amount by 2030. Each candidate abatement program is evaluated on both cost and benefit dimensions. Benefit is given by the amount of CO2 abated. Cost is measured as a "marginal cost," the amount of dollars required to achieve each million metric ton of abatement.

This "marginal abatement cost curve" aids the decision-making. It lines up the programs from the most cost-effective to the least cost-effective. The decision-maker is presumed to prefer a more cost-effective program than a less cost-effective program. The chart answers the following question: for any given subset of programs (so long as we select them left to right contiguously), we can read off the cumulative amount of CO2 abated.

***

There are still more limitations of the chart design.

  • We can't directly read off the cumulative cost of the selected subset of programs because the vertical axis is not cumulative. The cumulative cost turns out to be the total area of all the columns that correspond to the selected programs. (Area is height x width, which is cost per benefit multiplied by benefit, which leaves us with the cost.) Unfortunately, it takes rulers and calculators to compute this total area.

  • We have presumed that policy-makers will make the Go-No-go decision based on cost effectiveness alone. This point of view has already been contradicted. Remember the mystery around negatively cost-effective programs - their existence shows that some programs are stalled even when they reduce emissions in addition to making money!

  • Since many, if not most, programs have negative cost-effectiveness (by the way they measured it), I'd flip the metric over and call it profitability (or return on investment). Doing so removes another barrier to our understanding. With the current cost-effectiveness metric, policy-makers are selecting the "negative" programs before the "positive" programs. It makes more sense to select the "positive" programs before the "negative" ones!

***

In a Trifecta Checkup (guide), I rate this chart Type V. The chart has a great purpose, and the design reveals a keen sense of the decision-making process. It's not a data dump for sure. In addition, an impressive amount of data gathering and analysis - and synthesis - went into preparing the two data series required to construct the chart. (Sure, for something so subjective and speculative, the analysis methodology will inevitably be challenged by wonks.) Those two data series are reasonable measures for the stated purpose of the chart.

The chart form, though, has various shortcomings, as shown here.  

***

In our email exchange, Antonio and I found the Plan Washington website useful. This is where we learned that this chart is called the marginal abatement cost curve.

Also, the consulting firm McKinsey is responsible for popularizing this chart form. They have published this long report that explains even more of the analysis behind constructing this chart, for those who want further details.