To explain or to eliminate, that is the question

Today, I take a look at another project from Ray Vella's class at NYU.

Rich Get Richer Assigment 2 top

(The above image is a honeypot for "smart" algorithms that don't know how to handle image dimensions which don't fit their shadow "requirement". Human beings should proceed to the full image below.)

As explained in this post, the students visualized data about regional average incomes in a selection of countries. It turns out that remarkable differences persist in regional income disparity between countries, almost all of which are more advanced economies.

Rich Get Richer Assigment 2 Danielle Curran_1

The graphic is by Danielle Curran.

I noticed two smart decisions.

First, she came up with a different main metric for gauging regional disparity, landing on a metric that is simple to grasp.

Based on hints given on the chart, I surmised that Danielle computed the change in per-capita income in the richest and poorest regions separately for each country between 2000 and 2015. These regional income growth values are expressed in currency, not indiced. Then, she computed the ratio of these growth rates, for each country. The end result is a simple metric for each country that describes how fast income has been growing in the richest region relative to the poorest region.

One of the challenges of this dataset is the complex indexing scheme (discussed here). Carlos' solution keeps the indices but uses design to facilitate comparisons. Danielle avoids the indices altogether.

The reader is relieved of the need to make comparisons, and so can focus on differences in magnitude. We see clearly that regional disparity is by far the highest in the U.K.

***

The second smart decision Danielle made is organizing the countries into clusters. She took advantage of the horizontal axis which does not encode any data. The branching structure places different clusters of countries along the axis, making it simple to navigate. The locations of these clusters are cleverly aligned to the map below.

***

Danielle's effort is stronger on communications while Carlos' effort provides more information. The key is to understand who your readers are. What proportion of your readers would want to know the values for each country, each region and each year?

***

A couple of suggestions

a) The reference line should be set at 1, not 0, for a ratio scale. The value of 1 happens when the richest region and the poorest region have identical per-capita incomes.

b) The vertical scale should be fixed.


Displaying convoluted indices

I reviewed another batch of projects from Ray Vella's class at NYU. The following piece by Carlos Lasso made an impression on me. There are no pyrotechnics but he made one decision that added a lot of clarity to the graphic.

The Rich get Richer - Carlos Lasso

The underlying dataset gauges the income disparity of regions within nine countries. The richest and the poorest regions are selected for each country. Two time points are shown. Altogether, there are 9x2x2 = 36 numbers.

***

Let's take a deeper look at these numbers. Notice they are not in dollars, or any kind of currency, despite being about incomes. The numbers are index values, relative to 100. What does the reference level of 100 represent?

The value of 100 crosses every bar of the chart so that 100 has meaning in each country and each year. In fact, there are 18 definitions of 100 in this chart with 36 numbers, one for each country-year pair. The average national income is set to 100 for each country in each year. This is a highly convoluted indexing strategy.

The following chart is a re-visualization of the bottom part of Carlos' infographic.

Junkcharts_richricher2021_2columns

I shifted the scale of the horizontal axis. The value of zero does not hold special meaning in Carlos' chart. I subtracted 100 from the relative regional income indices, thus all regions with income above the average have positive values while those below the national average have negative values. (There are other challenges with the ratio scale, which I'll skip over in this post. The minimum value is -100 while the maximum value can be very large.)

The rescaling is not really the point of this post. To see what Carlos did, we have to look at the example shown in class. The graphic which the students were asked to improve has the following structure:

Junkcharts_richricher2021_1column

This one-column structure places four bars beside each country, grouped by year. Carlos pulled the year dimension out, and showed the same dataset in two columns.

This small change makes a great difference in ease of comprehension. Carlos' version unpacks the two key types of comparisons one might want to make: trend within a given country (horizontal comparison) and contrast between countries in a given year (vertical comparison).

***

I always try to avoid convoluted indexing. The cost of using such indices is the big how-to-read-this box.


Surging gas prices

A reader finds this chart hard to parse:

Twitter_mta_gasprices

The chart shows the trend in gas prices in New York in the past two years.

This is a case in which the simple line chart works very well.

Junkcharts_redo_mtagasprices

I added annotations as the reasons behind the decline and rise in prices are reasonably clear. 

One should be careful when formatting dates. The legend of the original chart looks like this:

Mta_gasprices_date_legend

In the U.S., dates typically use a M/D/Y format. The above dates are ambiguous. "Aug 19" can be August 19th or August, xx19.


Did prices go up or down? Depends on how one looks at the data

The U.S. media have been flooded with reports of runaway inflation recently, and it's refreshing to see a nice article in the Wall Street Journal that takes a second look at the data. Because as my readers know, raw data can be incredibly deceptive.

Inflation typically describes the change in price level relative to the prior year. The month-on-month change in price levels is a simple seasonal adjustment used to remove the effect of seasonality that masks the true change in price levels. (See this explainer of seasonal adjustment.)

As the pandemic enters the second year, this methodology is comparing 2021 price levels to pandemic-impacted price levels of 2020. This produces a very confusing picture. As the WSJ article explains, prices can be lower than they were in 2019 (pre-pandemic) and yet substantially higher than they were in 2020 (during the pandemic). This happens in industry sectors that were heavily affected by the economic shutdown, e.g. hotels, travel, entertainment.

Wsj_pricechangehotels_20192021Here is how they visualized this phenomenon. Amusingly, some algorithm estimated that it should take 5 minutes to read the entire article. It may take that much time to understand properly what this chart is showing.

Let me save you some time.

The chart shows monthly inflation rates of hotel price levels.

The pink horizontal stripes represent the official inflation numbers, which compare each month's hotel prices to those of a year prior. The most recent value for May of 2021 says hotel prices rose by 9% compared to May of 2020.

The blue horizontal stripes show an alternative calculation which compares each month's hotel prices to those of two years prior. Think of 2018-9 as "normal" years, pre-pandemic. Using this measure, we find that hotel prices for May of 2021 are about 4% lower than for May of 2019.

(This situation affects all of our economic statistics. We may see an expansion in employment levels from a year ago which still leaves us behind where we were before the pandemic.)

What confused me on the WSJ chart are the blocks of color. In a previous chart, the readers learn that solid colors mean inflation rose while diagonal lines mean inflation decreased. It turns out that these are month-over-month changes in inflation rates (notice that one end of the column for the previous month touches one end of the column of the next month).

The color patterns become the most dominant feature of this chart, and yet the month-over-month change in inflation rates isn't the crux of the story. The real star of the story should be the difference in inflation rates - for any given month - between two reference years.

***

In the following chart, I focus attention on the within-month, between-reference-years comparisons.

Junkcharts_redo_wsj_inflationbaserate

Because hotel prices dropped drastically during the pandemic, and have recovered quite well in recent months as the U.S. reopens the economy, the inflation rate of hotel prices is almost 10%. Nevertheless, the current price level is still 7% below the pre-pandemic level.

 



 


Two commendable student projects, showing different standards of beauty

A few weeks ago, I did a guest lecture for Ray Vella's dataviz class at NYU, and discussed a particularly hairy dataset that he assigns to students.

I'm happy to see the work of the students, and there are two pieces in particular that show promise.

The following dot plot by Christina Barretto shows the disparities between the richest and poorest nations increasing between 2000 and 2015.

BARRETTO  Christina - RIch Gets Richer Homework - 2021-04-14

The underlying dataset has the average GDP per capita for the richest and the poor regions in each of nine countries, for two years (2000 and 2015). With each year, the data are indiced to the national average income (100). In the U.K., the gap increased from around 800 to 1,100 in the 15 years. It's evidence that the richer regions are getting richer, and the poorer regions are getting poorer.

(For those into interpreting data, you should notice that I didn't say the rich getting richer. During the lecture, I explain how to interpret regional averages.)

Christina's chart reflects the tidy, minimalist style advocated by Tufte. The countries are sorted by the 2000-to-2015 difference, with Britain showing up as an extreme outlier.

***

The next chart by Adrienne Umali is more infographic than Tufte.

Adrienne Umali_v2

It's great story-telling. The top graphic explains the underlying data. It shows the four numbers and how the gap between the richest and poorest regions is computed. Then, it summarizes these four numbers into a single metric, "gap increase". She chooses to measure the change as a ratio while Christina's chart uses the difference, encoded as a vertical line.

Adrienne's chart is successful because she filters our attention to a single country - the U.S. It's much too hard to drink data from nine countries in one gulp.

This then sets her up for the second graphic. Now, she presents the other eight countries. Because of the work she did in the first graphic, the reader understands what those red and green arrows mean, without having to know the underlying index values.

Two small suggestions: a) order the countries from greatest to smallest change; b) leave off the decimals. These are minor flaws in a brilliant piece of work.

 

 


Come si dice donut in italiano

One of my Italian readers sent me the following "horror chart". (Last I checked, it's not Halloween.)

Horrorchart

I mean, people are selling these rainbow sunglasses.

Rainbowwunglasses

The dataset behind the chart is the market share of steel production by country in 1992 and in 2014. The presumed story is how steel production has shifted from country to country over those 22 years.

Before anything else, readers must decipher the colors. This takes their eyes off the data and on to the color legend placed on the right column. The order of the color legend is different from that found in the nearest object, the 2014 donut. The following shows how our eyes roll while making sense of the donut chart.

Junkcharts_steeldonuts_eye1

It's easier to read the 1992 donut because of the order but now, our eyes must leapfrog the 2014 donut.

Junkcharts_steeldonuts_eye2

This is another example of a visualization that fails the self-sufficiency test. The entire dataset is actually printed around the two circles. If we delete the data labels, it becomes clear that readers are consuming the data labels, not the visual elements of the chart.

Junkcharts_steeldonuts_sufficiency

The chart is aimed at an Italian audience so they may have a patriotic interest in the data for Italia. What they find is disappointing. Italy apparently completely dropped out of steel production. It produced 3% of the world's steel in 1992 but zero in 2014.

Now I don't know if that is true because while reproducing the chart, I noticed that in the 2014 donut, there is a dark orange color that is not found in the legend. Is that Italy or a mysterious new entrant to steel production?

One alternative is a dot plot. This design accommodates arrows between the dots indicating growth versus decline.

Junkcharts_redo_steeldonuts

 


Losses trickle down while gains trickle up

In a rich dataset, it's hard to convey all the interesting insights on a single chart. Following up on the previous post, I looked further at the wealth distribution dataset. In the previous post, I showed this chart, which indicated that the relative wealth of the super-rich (top 1%) rose dramatically around 2011.

Redo_bihouseholdwealth_legend

As a couple of commenters noticed, that's relative wealth. I indiced everything to the Bottom 50%.

In this next chart, I apply a different index. Each income segment is set to 100 at the start of the time period under study (2000), and I track how each segment evolved in the last two decades.

Junkcharts_redo_bihouseholdwealth_2

This chart offers many insights.

The Bottom 50% have been left far, far behind in the last 20 years. In fact, from 2000-2018, this segment's wealth never once reached the 2000 level. At its worst, around 2010, the Bottom 50% found themselves 80% poorer than they were 10 years ago!

In the meantime, the other half of the population has seen their wealth climb continuously through the 20 years. This is particularly odd because the major crisis of these two decades was the Too Big to Fail implosion of financial instruments, which the Bottom 50% almost surely did not play a part in. During that crisis, the top 50% were 30-60% better off than they were in 2000. Is this the "trickle-down" economy in which losses are passed down (but gains are passed up)?

The chart also shows how the recession hit the bottom 50% much deeper, and how the recovery took more than a decade. For the top half, the recovery came between 2-4 years.

It also appears that top 10% are further peeling off from the rest of the population. Since 2009, the top 11-49% have been steadily losing ground relative to the top 10%, while the gap between them and the Bottom 50% has narrowed.

***

This second chart is not nearly as dramatic as the first one but it reveals much more about the data.

 


Finding the hidden information behind nice-looking charts

This chart from Business Insider caught my attention recently. (link)

Bi_householdwealthchart

There are various things they did which I like. The use of color to draw a distinction between the top 3 lines and the line at the bottom - which tells the story that the bottom 50% has been left far behind. Lines being labelled directly is another nice touch. I usually like legends that sit atop the chart; in this case, I'd have just written the income groups into the line labels.

Take a closer look at the legend text, and you'd notice they struggled with describing the income percentiles.

Bi_householdwealth_legend

This is a common problem with this type of data. The top and bottom categories are easy, as it's most natural to say "top x%" and "bottom y%". By doing so, we establish two scales, one running from the top, and the other counting from the bottom - and it's a head scratcher which scale to use for the middle categories.

The designer decided to lose the "top" and "bottom" descriptors, and went with "50-90%" and "90-99%". Effectively, these follow the "bottom" scale. "50-90%" is the bottom 50 to 90 percent, which corresponds to the top 10 to 50 percent. "90-99%" is the bottom 90-99%, which corresponds to the top 1 to 10%. On this chart, since we're lumping the top three income groups, I'd go with "top 1-10%" and "top 10-50%".

***

The Business Insider chart is easy to mis-read. It appears that the second group from the top is the most well-off, and the wealth of the top group is almost 20 times that of the bottom group. Both of those statements are false. What's confusing us is that each line represents very different numbers of people. The yellow line is 50% of the population while the "top 1%" line is 1% of the population. To see what's really going on, I look at a chart showing per-capita wealth. (Just divide the data of the yellow line by 50, etc.)

Redo_bihouseholdwealth_legend

For this chart, I switched to a relative scale, using the per-capita wealth of the Bottom 50% as the reference level (100). Also, I applied a 4-period moving average to smooth the line. The data actually show that the top 1% holds much more wealth per capita than all other income segments. Around 2011, the gap between the top 1% and the rest was at its widest - the average person in the top 1% is about 3,000 times wealthier than someone in the bottom 50%.

This chart raises another question. What caused the sharp rise in the late 2000s and the subsequent decline? By 2020, the gap between the top and bottom groups is still double the size of the gap from 20 years ago. We'd need additional analyses and charts to answer this question.

***

If you are familiar with our Trifecta Checkup, the Business Insider chart is a Type D chart. The problem with it is in how the data was analyzed.


This holiday retailers hope it will snow dollars

According to the Conference Board, the pandemic will not deter U.S. consumers from emptying their wallets this holiday season. Here's a chart that shows their expectation (link):

COVID-19-Holiday-Spend-847

 

A few little things make this chart work:

The "More" category is placed on the left, as English-speaking countries tend to be read Left-to-Right, and it is also given the deepest green, drawing our attention.

Only the "More" segments have data labels. I'd have omitted the decimals. I suspect they are added because financial analysts may be multiplying these percentages to yield dollar amounts, in which case the extra precision helps.

The categories are ordered by the decreasing propensity of increased spending this year relative to last year. (The business community has an optimism bias.)

The choice of three shades of one color instead of three different colors keeps the chart clean.

***

The use of snowflakes surely infuriates a hardcore Tufte fan although I like that they add a festive note to the presentation. The large snowflake isn't randomly positioned but placed exactly where it causes the least interference with the bar chart.

 


Locating the political center

I mentioned the September special edition of Bloomberg Businessweek on the election in this prior post. Today, I'm featuring another data visualization from the magazine.

Bloomberg_politicalcenter_print_sm

***

Here are the rightmost two charts.

Bloomberg_politicalcenter_rightside Time runs from top to bottom, spanning four decades.

Each chart covers a political issue. These two charts concern abortion and marijuana.

The marijuana question (far right) has only two answers, legalize or don't legalize. The underlying data measure the proportions of people agreeing to each point of view. Roughly three-quarters of the population disagreed with legalization in 1980 while two-thirds agree with it in 2020.

Notice that there are no horizontal axis labels. This is a great editorial decision. Only coarse trends are of interest here. It's not hard to figure out the relative proportions. Adding labels would just clutter up the display.

By contrast, the abortion question has three answer choices. The middle option is "Sometimes," which is represented by a white color, with a dot pattern. This is an issue on which public opinion in aggregate has barely shifted over time.

The charts are organized in a small-multiples format. It's likely that readers are consuming each chart individually.

***

What about the dashed line that splits each chart in half? Why is it there?

The vertical line assists our perception of the proportions. Think of it as a single gridline.

In fact, this line is underplayed. The headline of the article is "tracking the political center." Where is the center?

Until now, we've paid attention to the boundaries between the differently colored areas. But those boundaries do not locate the political center!

The vertical dashed line is the political center; it represents the view of the median American. In 1980, the line sat inside the gray section, meaning the median American opposed legalizing marijuana. But the prevalent view was losing support over time and by 2010, there wer more Americans wanting to legalize marijuana than not. This is when the vertical line crossed into the green zone.

The following charts draw attention to the middle line, instead of the color boundaries:

Junkcharts_redo_bloombergpoliticalcenterrightsideOn these charts, as you glance down the middle line, you can see that for abortion, the political center has never exited the middle category while for marijuana, the median American didn't want to legalize it until an inflection point was reached around 2010.

I highlight these inflection points with yellow dots.

***

The effect on readers is entirely changed. The original charts draw attention to the areas first while the new charts pull your eyes to the vertical line.