Who trades with Sweden

It's great that the UN is publishing dataviz but it can do better than this effort:

Untradestats_sweden

Certain problems are obvious. The country names turned sideways. The meaningless use of color. The inexplicable sequencing of the country/region.

Some problems are subtler. "Area, nes" - upon research - is a custom term used by UN Trade Statistics, meaning "not elsewhere specified".

The gridlines are debatable. Their function is to help readers figure out the data values if they care. The design omitted the top and bottom gridlines, which makes it hard to judge the values for USA (dark blue), Netherlands (orange), and Germany (gray).

See here, where I added the top gridline.

Redo_untradestats_sweden_gridline

Now, we can see this value is around 3.6, just over the halfway point between gridlines.

***

A central feature of trading statistics is "balance". The following chart makes it clear that the positive numbers outweigh the negative numbers in the above chart.

Redo_untradestats_sweden

At the time I made the chart, I wasn't sure how to interpret the gap of 1.3%. Looking at the chart again, I think it's saying Sweden has a trade surplus equal to that amount.


Variance is a friend of dataviz

Seven years ago, I wrote a post about "invariance" in data visualization, which is something we should avoid (link). Yesterday, Business Insider published the following chart in an article about rising gas prices (link):

Businessinsider_gasprices_prices

The map shows the average prices at the pump in seven regions of the United States. 

This chart is succeeded by the following map:

Businessinsider_gasprices_pricechange

This second map shows the change in average gas prices in the same seven regions.

This design is invariant to the data! While the data change, the visualization looks identical. That's because the data are not encoded to any visual element - they are just printed as labels.

 


Selecting the right analysis plan is the first step to good dataviz

It's a new term, and my friend Ray Vella shared some student projects from his NYU class on infographics. There's always something to learn from these projects.

The starting point is a chart published in the Economist a few years ago.

Economist_richgetricher

This is a challenging chart to read. To save you the time, the following key points are pertinent:

a) income inequality is measured by the disparity between regional averages

b) the incomes are given in a double index, a relative measure. For each country and year combination, the average national GDP is set to 100. A value of 150 means the richest region of Spain has an average income that is 50% higher than Spain's national average in the year 2015.

The original chart - as well as most of the student work - is based on a specific analysis plan. The difference in the index values between the richest and poorest regions is used as a measure of the degree of income inequality, and the change in the difference in the index values over time, as a measure of change in the degree of income inequality over time. That's as big a mouthful as the bag of words sounds.

This analysis plan can be summarized as:

1) all incomes -> relative indices, at each region-year combination
2) inequality = rich - poor region gap, at each region-year combination
3) inequality over time = inequality in 2015 - inequality in 2000, for each country
4) country difference = inequality in country A - inequality in country B, for each year

***

One student, J. Harrington, looks at the data through an alternative lens that brings clarity to the underlying data. Harrington starts with change in income within the richest regions (then the poorest regions), so that a worsening income inequality should imply that the richest region is growing incomes at a faster clip than the poorest region.

This alternative analysis plan can be summarized as:
1) change in income over time for richest regions for each country
2) change in income over time for poorest regions for each country
3) inequality = change in income over time: rich - poor, for each country

The restructuring of the analysis plan makes a big difference!

Here is one way to show this alternative analysis:

Junkcharts_kfung_sixeurocountries_gdppercapita

The underlying data have not changed but the reader's experience is transformed.


Deficient deficit depiction

A twitter user alerted me to this chart put out by the Biden adminstration trumpeting a reduction in the budget deficit from 2020 to 2021:

Omb_deficitreduction

This column chart embodies a form that is popular in many presentations, including in scientific journals. It's deficient in so many ways it's a marvel how it continues to live.

There are just two numbers: -3132 and -2772. Their difference is $360 billion, which is less than just over 10 percent of the earlier number. It's not clear what any data graphic can add.

Indeed, the chart does not do much. It obscures the actual data. What is the budget deficit in 2020? Readers must look at the axis labels, and judge that it's about a quarter of the way between 3000 and 3500. Five hundred quartered is 125. So it's roughly $3.125 trillion. Similarly, the 2021 number is slightly above the halfway point between 2,500 and 3,000.

These numbers are upside down. Taller columns are bad! Shortening the columns is good. It's all counter intuitive.

Column charts encode data in the heights of the columns. The designer apparently wants readers to believe the deficit has been cut by about a third.

As usual, this deception is achieved by cutting the column chart off at its knees. Removing equal sections of each column destroys the propotionality of the heights.

Why hold back? Here's a version of the chart showing the deficit was cut by half:

Junkcharts_redo_ombbudgetdeficit

The relative percent reduction depends on where the baseline is placed. The only defensible baseline is the zero baseline. That's the only setting under which the relative percent reduction is accurately represented visually.

***

This same problem presents itself subtly in Covid-19 vaccine studies. I explain in this post, which I rate as one of my best Covid-19 posts. Check it out!

 

 


Superb tile map offering multiple avenues for exploration

Here's a beauty by WSJ Graphics:

Wsj_powerproduction

The article is here.

This data graphic illustrates the power of the visual medium. The underlying dataset is complex: power production by type of source by state by month by year. That's more than 90,000 numbers. They all reside on this graphic.

Readers amazingly make sense of all these numbers without much effort.

It starts with the summary chart on top.

Wsj_powerproduction_us_summary

The designer made decisions. The data are presented in relative terms, as proportion of total power production. Only the first and last years are labeled, thus drawing our attention to the long-term trend. The order of the color blocks is carefully selected so that the cleaner sources are listed at the top and the dirtier sources at the bottom. The order of the legend labels mirrors the color blocks in the area chart.

It takes only a few seconds to learn that U.S. power production has largely shifted away from coal with most of it substituted by natural gas. Other than wind, the green sources of power have not gained much ground during these years - in a relative sense.

This summary chart serves as a reading guide for the rest of the chart, which is a tile map of all fifty states. Embedded in the tile map is a small-multiples arrangement.

***

The map offers multiple avenues for exploration.

Some readers may look at specific states. For example, California.

Wsj_powerproduction_california

Currently, about half of the power production in California come from natural gas. Notably, there is no coal at all in any of these years. In addition to wind, solar energy has also gained. All of these insights come without the need for any labels or gridlines!

Wsj_powerproduction_westernstatesBrowsing around California, readers find different patterns in other Western states like Oregon and Washington.

Hydroelectric energy is the dominant source in those two states, with wind gradually taking share.

At this point, readers realize that the summary chart up top hides remarkable state-level variations.

***

There are other paths through the map.

Some readers may scan the whole map, seeking patterns that pop out.

One such pattern is the cluster of states that use coal. In most of these states, the proportion of coal has declined.

Yet another path exists for those interested in specific sources of power.

For example, the trend in nuclear power usage is easily followed by tracking the purple. South Carolina, Illinois and New Hampshire are three states that rely on nuclear for more than half of its power.

Wsj_powerproduction_vermontI wonder what happened in Vermont about 8 years ago.

The chart says they renounced nuclear energy. Here is some history. This one-time event caused a disruption in the time series, unique on the entire map.

***

This work is wonderful. Enjoy it!


Dots, lines, and 2D histograms

Daniel Z. tweeted about my post from last week. In particular, he took a deeper look at the chart of energy demand that put all hourly data onto the same plot, originally published at the StackOverflow blog:

Stackoverflow_variabilitychart

I noted that this is not a great chart particularly since what catches our eyes are not the key features of the underlying data. Daniel made a clearly better chart:

Danielzvinca_densitychart

This is a dot plot, rather than a line chart. The dots are painted in light gray, pushed to the background, because readers should be looking at the orange line. (I'm not sure what is going on with the horizontal scale as I could not get the peaks to line up on the two charts.)

What is this orange line? It's supposed to prove the point that the apparent dark band seen in the line chart does not represent the most frequently occurring values, as one might presume.

Looking closer, we see that the gray dots do not show all the hourly data but binned values.

Danielzvinca_densitychart_inset
We see vertical columns of dots, each representing a bin of values. The size of the dots represents the frequency of values of each bin. The orange line connects the bins with the highest number of values.

Daniel commented that

"The visual aggregation doesn't in fact map to the most frequently occurring values. That is because the ink of almost vertical lines fills in all the space between start and end."

Xan Gregg investigated further, and made a gif to show this effect better. Here is a screenshot of it (see this tweet):

Xangregg_dots_vs_line

The top chart is a true dot plot so that the darker areas are denser as the dots overlap. The bottom chart is the line chart that has the see-saw pattern. As Xan noted, the values shown are strangely very well behaved (aggregated? modeled?) - with each day, it appears that the values sweep up and down consistently.  This means the values are somewhat evenly spaced on the underlying trendline, so I think this dataset is not the best one to illustrate Daniel's excellent point.

It's usually not a good idea to connect lots of dots with a single line.

 

[P.S. 3/21/2022: Daniel clarified what the orange line shows: "In the posted chart, the orange line encodes the daily demand average (the mean of the daily distribution), rounded, for displaying purposes, to the closed bin. Bin size = 1000. Orange could have encode the daily median as well."]

 


Ringing in the data

There is a lot of great stuff at Visual Capitalist.

This circular design isn't one of their best.

Visualcapitalist_GDPDebt2021_1800px_Finalized

***

A self-sufficiency test helps diagnose the problem. Notice that every data point is printed on the diagram. If the data labels were removed, there isn't much one can learn from the chart other than the ranking of countries from most indebted to least. It would be impossible to know the difference in debt levels between any pair of countries.

In other words, the data labels rather than visual elements are doing most of the work. In a good dataviz, we like the visual elements to carry the weight.

***

The concentric rings embed a visual hierarchy: Japan is singled out, then the next tier of countries include Sudan, Greece, Eritrea, Cape Verde, Italy, Suriname, and Barbados; and so on.

What is the clustering algorithm? What determines which countries fall into the same group?

It's implicitly determined by how many countries can fit inside the next ring. The designer carefully computed the number of rings, the widths of the rings, the density of the circles, etc. in such a way that there is no unsightly white space on the outer ring. Score a 10/10 for effort!

So the clustering of countries is not data-driven but constrained by the chart form. This limitation is similar to that found on maps used to illustrate spatial data.

 

 


To explain or to eliminate, that is the question

Today, I take a look at another project from Ray Vella's class at NYU.

Rich Get Richer Assigment 2 top

(The above image is a honeypot for "smart" algorithms that don't know how to handle image dimensions which don't fit their shadow "requirement". Human beings should proceed to the full image below.)

As explained in this post, the students visualized data about regional average incomes in a selection of countries. It turns out that remarkable differences persist in regional income disparity between countries, almost all of which are more advanced economies.

Rich Get Richer Assigment 2 Danielle Curran_1

The graphic is by Danielle Curran.

I noticed two smart decisions.

First, she came up with a different main metric for gauging regional disparity, landing on a metric that is simple to grasp.

Based on hints given on the chart, I surmised that Danielle computed the change in per-capita income in the richest and poorest regions separately for each country between 2000 and 2015. These regional income growth values are expressed in currency, not indiced. Then, she computed the ratio of these growth rates, for each country. The end result is a simple metric for each country that describes how fast income has been growing in the richest region relative to the poorest region.

One of the challenges of this dataset is the complex indexing scheme (discussed here). Carlos' solution keeps the indices but uses design to facilitate comparisons. Danielle avoids the indices altogether.

The reader is relieved of the need to make comparisons, and so can focus on differences in magnitude. We see clearly that regional disparity is by far the highest in the U.K.

***

The second smart decision Danielle made is organizing the countries into clusters. She took advantage of the horizontal axis which does not encode any data. The branching structure places different clusters of countries along the axis, making it simple to navigate. The locations of these clusters are cleverly aligned to the map below.

***

Danielle's effort is stronger on communications while Carlos' effort provides more information. The key is to understand who your readers are. What proportion of your readers would want to know the values for each country, each region and each year?

***

A couple of suggestions

a) The reference line should be set at 1, not 0, for a ratio scale. The value of 1 happens when the richest region and the poorest region have identical per-capita incomes.

b) The vertical scale should be fixed.


Displaying convoluted indices

I reviewed another batch of projects from Ray Vella's class at NYU. The following piece by Carlos Lasso made an impression on me. There are no pyrotechnics but he made one decision that added a lot of clarity to the graphic.

The Rich get Richer - Carlos Lasso

The underlying dataset gauges the income disparity of regions within nine countries. The richest and the poorest regions are selected for each country. Two time points are shown. Altogether, there are 9x2x2 = 36 numbers.

***

Let's take a deeper look at these numbers. Notice they are not in dollars, or any kind of currency, despite being about incomes. The numbers are index values, relative to 100. What does the reference level of 100 represent?

The value of 100 crosses every bar of the chart so that 100 has meaning in each country and each year. In fact, there are 18 definitions of 100 in this chart with 36 numbers, one for each country-year pair. The average national income is set to 100 for each country in each year. This is a highly convoluted indexing strategy.

The following chart is a re-visualization of the bottom part of Carlos' infographic.

Junkcharts_richricher2021_2columns

I shifted the scale of the horizontal axis. The value of zero does not hold special meaning in Carlos' chart. I subtracted 100 from the relative regional income indices, thus all regions with income above the average have positive values while those below the national average have negative values. (There are other challenges with the ratio scale, which I'll skip over in this post. The minimum value is -100 while the maximum value can be very large.)

The rescaling is not really the point of this post. To see what Carlos did, we have to look at the example shown in class. The graphic which the students were asked to improve has the following structure:

Junkcharts_richricher2021_1column

This one-column structure places four bars beside each country, grouped by year. Carlos pulled the year dimension out, and showed the same dataset in two columns.

This small change makes a great difference in ease of comprehension. Carlos' version unpacks the two key types of comparisons one might want to make: trend within a given country (horizontal comparison) and contrast between countries in a given year (vertical comparison).

***

I always try to avoid convoluted indexing. The cost of using such indices is the big how-to-read-this box.


Surging gas prices

A reader finds this chart hard to parse:

Twitter_mta_gasprices

The chart shows the trend in gas prices in New York in the past two years.

This is a case in which the simple line chart works very well.

Junkcharts_redo_mtagasprices

I added annotations as the reasons behind the decline and rise in prices are reasonably clear. 

One should be careful when formatting dates. The legend of the original chart looks like this:

Mta_gasprices_date_legend

In the U.S., dates typically use a M/D/Y format. The above dates are ambiguous. "Aug 19" can be August 19th or August, xx19.