Ridings, polls, elections, O Canada

Stephen Taylor reached out to me about his work to visualize Canadian elections data. I took a look. I appreciate the labor of love behind this project.

He led with a streamgraph, which presents a quick overview of relative party strengths over time.

Stephentaylor_canadianelections_streamgraph

I am no Canadian election expert, and I did a bare minimum of research in writing this blog. From this chart, I learn that:

  • the Canadians have an irregular election schedule
  • Canada has a two party plus breadcrumbs system
  • The two dominant parties are Liberals and Conservatives. The Liberals currently hold just less than half of the seats. The Conservatives have more than half of the seats not held by Liberals
  • The Conservative party (maybe) rebranded as "progressive conservative" for several decades. The Reform/Alliance party was (maybe) a splinter movement within the Conservatives as well.
  • Since the "width" of the entire stream increased over time, I'm guessing the number of seats has expanded

That's quite a bit of information obtained at a glance. This shows the power of data visualization. Notice Stephen didn't even have to include a "how to read this" box.

The streamgraph form has its limitations.

The feature that makes it more attractive than an area chart is its middle anchoring, resulting in a form of symmetry. The same feature produces erroneous intuition - the red patch draws out a declining trend; the reader must fight the urge to interpret the lines and focus on the areas.

The breadcrumbs are well hidden. The legend below discloses that the Green Party holds 3 seats currently. The party has never held enough seats to appear on the streamgraph though.

The bars showing proportions in the legend is a very nice touch. (The numbers appear messed up - I have to ask Stephen whether the seats shown are current values, or some kind of historical average.) I am a big fan of informative legends.

***

The next featured chart is a dot plot of polling results since 2020.

Stephentaylor_canadianelections_streamgraph_polls_dotplot

One can see a three-tier system: the two main parties, then the NDP (yellow) is the clear majority of the minority, and finally you have a host of parties that don't poll over 10%.

It looks like the polls are favoring the Conservatives over the Liberals in this election but it may be an election-day toss-up.

The purple dots represent "PPC" which is a party not found elsewhere on the page.

This chart is clear as crystal because of the structure of the underlying data. It just amazes me that the polls are so highly correlated. For example, across all these polls, the NDP has never once polled better than either the Liberals or the Conservatives, and in addition, it has never polled worse than any of the small parties.

What I'd like to see is a chart that merges the two datasets, addressing the question of how well these polls predicted the actual election outcomes.

***

The project goes very deep as Stephen provides charts for individual "ridings" (perhaps similar to U.S. precincts).

Here we see population pyramids for Vancouver Center, versus British Columbia (Province), versus Canada.

Stephentaylor_canadianelections_riding_populationpyramids

This riding has a large surplus of younger people in their twenties and thirties. Be careful about the changing scales though. The relative difference in proportions are more drastic than visually displayed because the maximum values (5%) on the Province and Canada charts are half that on the Riding chart (10%). Imagine squashing the Province and Canada charts to half their widths.

Analyses of income and rent/own status are also provided.

This part of the dashboard exhibits a problem common in most dashboards - they present each dimension of the data separately and miss out on the more interesting stuff: the correlation between dimensions. Do people in their twenties and thirties favor specific parties? Do richer people vote for certain parties?

***

The riding-level maps are the least polished part of the site. This is where I'm looking for a "how to read it" box.

Stephentaylor_canadianelections_ridingmaps_pollwinner

It took me a while to realize that the colors represent the parties. If I haven't come in from the front page, I'd have been totally lost.

Next, I got confused by the use of the word "poll". Clicking on any of the subdivisions bring up details of an actual race, with party colors, candidates and a donut chart showing proportions. The title gives a "poll id" and the name of the riding in parentheses. Since the poll id changes as I mouse over different subdivisions, I'm wondering whether a "poll" is the term for a subdivision of a riding. A quick wiki search indicates otherwise.

Stephentaylor_canadianelections_ridingmaps_donut

My best guess is the subdivisions are indicated by the numbers.

Back to the donut charts, I prefer a different sorting of the candidates. For this chart, the two most logical orderings are (a) order by overall popularity of the parties, fixed for all ridings and (b) order by popularity of the candidate, variable for each riding.

The map shown above gives the winner in each subdivision. This type of visualization dumps a lot of information. Stephen tackles this issue by offering a small multiples view of each party. Here is the Liberals in Vancouver.

Stephentaylor_canadianelections_ridingmaps_partystrength

Again, we encounter ambiguity about the color scheme. Liberals have been associated with a red color but we are faced with abundant yellow. After clicking on the other parties, you get the idea that he has switched to a divergent continuous color scale (red - yellow - green). Is red or green the higher value? (The answer is red.)

I'd suggest using a gray scale for these charts. The hardest decision is going to be the encoding between values and shading. Should each gray scale be different for each riding and each party?

If I were to take a guess, Stephen must have spent weeks if not months creating these maps (depending on whether he's full-time or part-time). What he has published here is a great start. Fine-tuning the issues I've mentioned may take more weeks or months more.

****

Stephen is brave and smart to send this project for review. For one thing, he's got some free consulting. More importantly, we should always send work around for feedback; other readers can tell us where our blind spots are.

To read more, start with this post by Stephen in which he introduces his project.


Come si dice donut in italiano

One of my Italian readers sent me the following "horror chart". (Last I checked, it's not Halloween.)

Horrorchart

I mean, people are selling these rainbow sunglasses.

Rainbowwunglasses

The dataset behind the chart is the market share of steel production by country in 1992 and in 2014. The presumed story is how steel production has shifted from country to country over those 22 years.

Before anything else, readers must decipher the colors. This takes their eyes off the data and on to the color legend placed on the right column. The order of the color legend is different from that found in the nearest object, the 2014 donut. The following shows how our eyes roll while making sense of the donut chart.

Junkcharts_steeldonuts_eye1

It's easier to read the 1992 donut because of the order but now, our eyes must leapfrog the 2014 donut.

Junkcharts_steeldonuts_eye2

This is another example of a visualization that fails the self-sufficiency test. The entire dataset is actually printed around the two circles. If we delete the data labels, it becomes clear that readers are consuming the data labels, not the visual elements of the chart.

Junkcharts_steeldonuts_sufficiency

The chart is aimed at an Italian audience so they may have a patriotic interest in the data for Italia. What they find is disappointing. Italy apparently completely dropped out of steel production. It produced 3% of the world's steel in 1992 but zero in 2014.

Now I don't know if that is true because while reproducing the chart, I noticed that in the 2014 donut, there is a dark orange color that is not found in the legend. Is that Italy or a mysterious new entrant to steel production?

One alternative is a dot plot. This design accommodates arrows between the dots indicating growth versus decline.

Junkcharts_redo_steeldonuts

 


Avoid concentric circles

A twitter follower sent me this chart by way of Munich:

Msc_staggereddonut

The logo of the Munich Security Conference (MSC) is quite cute. It looks like an ear. Perhaps that inspired this, em, staggered donut chart.

I like to straighten curves out so the donut chart becomes a bar chart:

Redo_junkcharts_msc_germanallies_distortion

The blue and gray bars mimic the lengths of the arcs in the donut chart. The yellow bars show the relative size of the underlying data. You can see that three of the four arcs under-represent the size of the data.

Why is that so? It's due to the staggering. Inner circles have smaller circumferences than outer circles. The designer keeps the angles the same so the arc lengths have been artificially reduced.

Junkcharts_redo_munichgermanallies_donuts

***

The donut chart is just a pie chart with a hole punched in the middle. For both pie charts and donut charts, the data are encoded in the angles at the center of the circle. Under normal circumstances, pie charts can also be read by comparing sector areas, and donut charts using arc lengths, as those are proportional to the angles.

The area and arc interpretation fails when the designer alters the radii of the sections. Look at the following pair of pie charts, produced by filling the hole in the above donuts:

Junkcharts_redo_munichgermanallies_pies

The staggered pie chart distorts the data if the reader compares areas but not so if the reader compares angles at the center. The pie chart can be read both ways so long as the designer does not alter the radii.

 


McKinsey thinks the data world needs more dataviz talent

Note about last week: While not blogging, I delivered four lectures on three topics over five days: one on the use of data analytics in marketing for a marketing class at Temple; two on the interplay of analytics and data visualization, at Yeshiva and a JMP Webinar; and one on how to live during the Data Revolution at NYU.

This week, I'm back at blogging.

McKinsey publishes a report confirming what most of us already know or experience - the explosion of data jobs that just isn't stopping.

On page 5, it says something that is of interest to readers of this blog: "As data grows more complex, distilling it and bringing it to life through visualization is becoming critical to help make the results of data analyses digestible for decision makers. We estimate that demand for visualization grew roughly 50 percent annually from 2010 to 2015." (my bolding)

The report contains a number of unfortunate graphics. Here's one:

Mckinseyreport_pageiii

I applied my self-sufficiency test by removing the bottom row of data from the chart. Here is what happened to the second circle, representing the fraction of value realized by the U.S. health care industry.

Mckinseyreport_pageiii_inset

What does the visual say? This is one of the questions in the Trifecta Checkup. We see three categories of things that should add up to 100 percent. With a little more effort, we find the two colored categories are each 10% while the white area is 80%. 

But that's not what the data say, because there is only one thing being measured: how much of the potential has already been realized. The two colors is an attempt to visualize the uncertainty of the estimated proportion, which in this case is described as 10 to 20 percent underneath the chart.

If we have to describe what the two colored sections represent: the dark green section is the lower bound of the estimate while the medium green section is the range of uncertainty. The edge between the two sections is the actual estimated proportion (assuming the uncertainty bound is symmetric around the estimate)!

A first attempt to fix this might be to use line segments instead of colored arcs. 

Redo_mckinseyreport_inset_jc_1

The middle diagram emphasizes the mid-point estimate while the right diagram, the range of estimates. Observe how differently these two diagrams appear from the original one shown on the left.

This design only works if the reader perceives the chart as a "racetrack" chart. You have to see the invisible vertical line at the top, which is the starting line, and measure how far around the track has the symbol gone. I have previously discussed why I don't like racetracks (for example, here and here).

***

Here is a sketch of another design:

Redo_mckinseyreport_jc_2

The center figure will have to be moved and changed to a different shape. This design conveys the sense of a goal (at 100%) and how far one is along the path. The uncertainty is represented by wave-like elements that make the exact location of the pointer arrow appear as wavering.

 

 

 

 


Plotted performance guaranteed not to predict future performance

On my flight back from Lyon, I picked up a French magazine, and found the following chart:

French interest rates chart small

A quick visit to Bing Translate tells me that this chart illustrates the rates of return of different types of investments. The headline supposedly says "Only the risk pays". In many investment brochures, after presenting some glaringly optimistic projections of future returns, the vendor legally protects itself by proclaiming "Past performance does not guarantee future performance."

For this chart, an appropriate warning is PLOTTED PERFORMANCE GUARANTEED NOT TO PREDICT THE FUTURE!

***

Two unusual decisions set this chart apart:

1. The tree ring imagery, which codes the data in the widths of concentric rings around a common core

2. The placement of larger numbers toward the middle, and smaller numbers in the periphery.

When a reader takes in the visual design of this chart, what is s/he drawn to?

The designer evidently hopes the reader will focus on comparing the widths of the rings (A), while ignoring the areas or the circumferences. I think it is more likely that the reader will see one of the following:

(B) the relative areas of the tree rings

(C) the areas of the full circles bounded by the circumferences

(D) the lengths of the outer rings

(E) the lengths of the inner rings

(F) the lengths of the "middle" rings (defined as the average of the outer and inner rings)

Here is a visualization of six ways to "see" what is on the French rates of return chart:

Redo_jc_frenchinterestrates_1

Recall the Trifecta Checkup (link). This is an example where "What does the visual say" and "What does the data say" may be at variance. In case (A), if the reader is seeing the ring widths, then those two aspects are in sync. In every other case, the two aspects are disconcordant. 

The level of distortion is visualized in the following chart:

Redo_jc_frenchinterestrates_2

Here, I normalized everything to the size of the SCPI data. The true data is presented by the ring width column, represented by the vertical stripes on the left. If the comparisons are not distorted, the other symbols should stay close to the vertical stripes. One notices there is always distortion in cases (B)-(F). This is primarily due to the placement of the large numbers near the center and the small numbers near the edge. In other words, the radius is inversely proportional to the data!

 The amount of distortion for most cases ranges from 2 to 6 times. 

While the "ring area" (B) version is least distorted on average, it is perhaps the worst of the six representations. The level of distortion is not a regular function of the size of the data. The "sicav monetaries" (smallest data) is the least distorted while the data of medium value are the most distorted.

***

To improve this chart, take a hint from the headline. Someone recognizes that there is a tradeoff between risk and return. The data series shown, which is an annualized return, only paints the return part of the relationship. 

 

 

 


The French takes back cinema but can you see it?

I like independent cinema, and here are three French films that come to mind as I write this post: Delicatessen, The Class (Entre les murs), and 8 Women (8 femmes). 

The French people are taking back cinema. Even though they purchased more tickets to U.S. movies than French movies, the gap has been narrowing in the last two decades. How do I know? It's the subject of this infographic

DataCinema

How do I know? That's not easy to say, given how complicated this infographic is. Here is a zoomed-in view of the top of the chart:

Datacinema_top

 

You've got the slice of orange, which doubles as the imagery of a film roll. The chart uses five legend items to explain the two layers of data. The solid donut chart presents the mix of ticket sales by country of origin, comparing U.S. movies, French movies, and "others". Then, there are two thin arcs showing the mix of movies by country of origin. 

The donut chart has an usual feature. Typically, the data are coded in the angles at the donut's center. Here, the data are coded twice: once at the center, and again in the width of the ring. This is a self-defeating feature because it draws even more attention to the area of the donut slices except that the areas are highly distorted. If the ratios of the areas are accurate when all three pieces have the same width, then varying those widths causes the ratios to shift from the correct ones!

The best thing about this chart is found in the little blue star, which adds context to the statistics. The 61% number is unusually high, which demands an explanation. The designer tells us it's due to the popularity of The Lion King.

***

The one donut is for the year 1994. The infographic actually shows an entire time series from 1994 to 2014.

The design is most unusual. The years 1994, 1999, 2004, 2009, 2014 receive special attention. The in-between years are split into two pairs, shrunk, and placed alternately to the right and left of the highlighted years. So your eyes are asked to zig-zag down the page in order to understand the trend. 

To see the change of U.S. movie ticket sales over time, you have to estimate the sizes of the red-orange donut slices from one pie chart to another. 

Here is an alternative visual design that brings out the two messages in this data: that French movie-goers are increasingly preferring French movies, and that U.S. movies no longer account for the majority of ticket sales.

Redo_junkcharts_frenchmovies

A long-term linear trend exists for both U.S. and French ticket sales. The "outlier" values are highlighted and explained by the blockbuster that drove them.

 

P.S.

1. You can register for the free seminar in Lyon here. To register for live streaming, go here.
2. Thanks Carla Paquet at JMP for help translating from French.


Saying no thanks to a box of donuts

As I reported last week, the Department of Education for Delaware is running a survey on dashboard design. The survey link is here.

One of the charts being evaluated is a box of donuts, as shown below:

Delaware_doe

I have written before about the problem with donut charts (see here). A box of donuts is worse than one donut. Here, each donut references a school year. The composition by race/ethnicity of the student body is depicted. In aggregate, the composition has not changed drastically although there are small changes from year to year.

In the following alternative, I use a side-by-side line charts, sometimes called slopegraphs, to illustrate the change by race/ethnicity.

Redo_delaware_doe

The key decisions are:

  • using slopes to encode the year-to-year changes, as opposed to having readers compute those changes by measuring and dividing
  • using color to show insights (whether the race/ethnicity has expanded, contracted or remained stable across the three years) as opposed to definitions of the data
  • not showing that the percentages within each year summing to 100% as opposed to explicitly presenting this fact in a circular arrangement
  • placing annual data side by side on the same plot region as opposed to separating them in three charts

***

There is still a further question of how big a change from year to year is considered material.

This is a good example of why there is never "complete data." In theory, the numbers on this chart are "complete," and come from administrative records. Even when ignoring the possibility that some of the records are missing or incorrect, you still have the issue that the students in the system from year to year varies, so a 1 percent increase in the proportion of Hispanic students can indicate a real demographic trend, or it does not.

 

 


When design goes awry

One can't accuse the following chart of lacking design. Strong is the evidence of departing from convention but the design decisions appear wayward. (The original link on Money here)

Mc_cellphones_money17

 

The donut chart (right) has nine sections. Eight of the sections (excepting A) have clearly all been bent out of shape. It turns out that section A does not have the right size either. The middle gray circle is not really in the middle, as seen below.

Redo_mc_cellphone

The bar charts (left) suffer from two ills. Firstly, the full width of the chart is at the 50 percent mark, so readers are forced to read the data labels to understand the data. Secondly, only the top two categories are shown, thus the size of the whole is lost. A stacked bar chart would serve better here.

Here is a bardot chart; the "dot" part of it makes it easier to see a Top 2 box analysis.

Redo_jc_mc_cellphone_2

I explain the bardot chart here.

 

 PS. Here is Jamie's version (from the comment below):

Jamie_mc_cellphone

 

 


Layered donuts have excess fats and oils

Via Twitter, Nicholas S. sent this chart:

Usda_donutchart

It's a layered donut. There isn't much context here except that the chart comes from USDA. Judging from the design, I surmise that the key message is the change in proportion by food groups between 1970 and 2014. I am assuming that these food groups are exhaustive so that it makes sense to put them in a donut chart, with all pieces adding up to 100%.

The following small-multiples line chart conveys most of the information:

Redo_usdadonutchart_jc

The story is the big jump in "Added fats and oils".  In the layered donut, the designer highlighted this by a moire effect, something to be avoided.

Note the parenthetical 2010 next to the Added fats and oils label. The data for all other food groups come from 2014 but the number for the most important category is four years older. The chart would be more compelling if they used 2010 data for everything.

One piece of information is ostensibly absent in the line chart version - the growth in the size of the pie. The total of the data increased about 20% from 1970 to 2014. In theory, the layered donut can convey this growth by the perimeters of the circles. But it doesn't appear that the designer saw this as an important insight since the total area of the outer donut is clearly more than 20% of the area of the inner donut.

 


An unsuccessful adaptation of a classic

Found this chart in Hemispheres magazine on board a United flight:

United_sfemploy_sm

A quick self-sufficiency test reveals the biggest shortcoming of this visual presentation.

United_sfemployment_sufficiency

What would you guess is the difference in areas between the two white-ish sectors (pointing at 9 o'clock and 2 o'clock)? The actual numbers are 18.3% and 12.5%. So roughly, if one takes the 2-o'clock sector (right), halve it and add it back to itself, one should obtain the area of the 9-o'clock sector (left). Clearly, the piece on the left is much too big.

The following chart shows the index of exaggeration increasing with the value of the data. (For example, the highest value of 18.3% is about 9 times the lowest value of 2.3% but the the ratio of the areas depicted is ~500 times.)

United_employment_exag

The distortion is larger than usual because the designer encodes the data twice, once in the angle of the sector, and again in the radius. Both those quantities contribute to the area of a circle.

Readers must look at the data in order to read this chart properly, therefore the visual elements are not self-sufficient. Further, if readers chose to perceive the relative sizes of the sectors, they would have misread the data massively.

***

The designer was probably inspired by the Nightingale rose diagram (link to Wikipedia):

800px-Nightingale-mortality

In the original, Nightingale does not encode data into the angles. The circle is divided evenly into 12 pieces to display the 12 months of the year (She might have taken into account 28-31 days; it's hard to tell by inspection). The data is encoded once along the radial axes.

Another difference between the two charts is the ordering of the data. In Nightingale's version, the order is logically determined by the passing of time. In the Hemispheres chart, the order is chosen based on taste. A more natural order would be by the proportion of employment but I think the resulting chart would look like a snail's shell, or worse. I must say a more balanced "rose diagram" looks nicer but it forces my eyes to jump around to answer a simple question such as which are the top three employment sectors in San Francisco.