Women workers taken for a loop or four

I was drawn to the following chart in Business Insider because of the calendar metaphor. (The accompanying article is here.)

Businessinsider_payday

Sometimes, the calendar helps readers grasp concepts faster but I'm afraid the usage here slows us down.

The underlying data consist of just four numbers: the wage gaps between race and gender in the U.S., considered simply from an aggregate median personal income perspective. The analyst adopts the median annual salary of a white male worker as a baseline. Then, s/he imputes the number of extra days that others must work to attain the same level of income. For example, the median Asian female worker must work 64 extra days (at her daily salary level) to match the white guy's annual pay. Meanwhile, Hispanic female workers must work 324 days extra.

There are a host of reasons why the calendar metaphor backfired.

Firstly, it draws attention to an uncomfortable detail of the analysis - which papers over the fact that weekends or public holidays are counted as workdays. The coloring of the boxes compounds this issue. (And the designer also got confused and slipped up when applying the purple color for Hispanic women.)

Secondly, the calendar focuses on Year 2 while Year 1 lurks in the background - white men have to work to get that income (roughly $46,000 in 2017 according to the Census Bureau).

Thirdly, the calendar view exposes another sore point around the underlying analysis. In reality, the white male workers are continuing to earn wages during Year 2.

The realism of the calendar clashes with the hypothetical nature of the analysis.

***

One can just use a bar chart, comparing the number of extra days needed. The calendar design can be considered a set of overlapping bars, wrapped around the shape of a calendar.

The staid bars do not bring to life the extra toil - the message is that these women have to work harder to get the same amount of pay. This led me to a different metaphor - the white men got to the destination in a straight line but the women must go around loops (extra days) before reaching the same endpoint.

Redo_businessinsider_racegenderpaygap

While the above is a rough sketch, I made sure that the total length of the lines including the loops roughly matches the total number of days the women needed to work to earn $46,000.

***

The above discussion focuses solely on the V(isual) corner of the Trifecta Checkup, but this data visualization is also interesting from the D(ata) perspective. Statisticians won't like such a simple analysis that ignores, among other things, the different mix of jobs and industries underlying these aggregate pay figures.

Now go to my other post on the sister (book) blog for a discussion of the underlying analysis.

 

 


Powerful photos visualizing housing conditions in Hong Kong

I was going to react to Alberto's post about the New York Times's article about economic inequality in Hong Kong, which is proposed as one origin to explain the current protest movement. I agree that the best graphic in this set is the "photoviz" showing the "coffins" or "cages" that many residents live in, because of the population density. 

Nyt_hongkong_apartment_photoviz

Then I searched the archives, and found this old post from 2015 which is the perfect response to it. What's even better, that post was also inspired by Alberto.

The older post featured a wonderful campaign by human rights organization Society for Community Organization that uses photoviz to draw attention to the problem of housing conditions in Hong Kong. They organized a photography exhibit on this theme in 2014. They then updated the exhibit in 2016.

Here is one of the iconic photos by Benny Lam:

Soco_trapped_B1

I found more coverage of Benny's work here. There is also a book that we can flip on Vimeo.

In 2017, the South China Morning Post (SCMP) published drone footage showing the outside view of the apartment buildings.

***

What's missing is the visual comparison to the luxury condos where the top 1 percent live. For these, one can  visit the real estate sites, such as Sotheby's. Here is their "12 luxury homes for sales" page.

Another comparison: a 1000 sq feet apartment that sits between those extremes. The photo by John Butlin comes from SCMP's Post Magazine's feature on the apartment:

Butlin_scmp_home

***

Also check out my review of Alberto's fantastic, recent book, How Charts Lie.

Cairo_howchartslie_cover

 

 


What is a bad chart?

In the recent issue of Madolyn Smith’s Conversations with Data newsletter hosted by DataJournalism.com, she discusses “bad charts,” featuring submissions from several dataviz bloggers, including myself.

What is a “bad chart”? Based on this collection of curated "bad charts", it is not easy to nail down “bad-ness”. The common theme is the mismatch between the message intended by the designer and the message received by the reader, a classic error of communication. How such mismatch arises depends on the specific example. I am able to divide the “bad charts” into two groups: charts that are misinterpreted, and charts that are misleading.

 

Charts that are misinterpreted

The Causes of Death entry, submitted by Alberto Cairo, is a “well-designed” chart that requires “reading the story where it is inserted and the numerous caveats.” So readers may misinterpret the chart if they do not also partake the story at Our World in Data which runs over 1,500 words not including the appendix.

Ourworldindata_causesofdeath

The map of Canada, submitted by Highsoft, highlights in green the provinces where the majority of residents are members of the First Nations. The “bad” is that readers may incorrectly “infer that a sizable part of the Canadian population is First Nations.”

Highsoft_CanadaFirstNations

In these two examples, the graphic is considered adequate and yet the reader fails to glean the message intended by the designer.

 

Charts that are misleading

Two fellow bloggers, Cole Knaflic and Jon Schwabish, offer the advice to start bars at zero (here's my take on this rule). The “bad” is the distortion introduced when encoding the data into the visual elements.

The Color-blindness pictogram, submitted by Severino Ribecca, commits a similar faux pas. To compare the rates among men and women, the pictograms should use the same baseline.

Colourblindness_pictogram

In these examples, readers who correctly read the charts nonetheless leave with the wrong message. (We assume the designer does not intend to distort the data.) The readers misinterpret the data without misinterpreting the graphics.

 

Using the Trifecta Checkup

In the Trifecta Checkup framework, these problems are second-level problems, represented by the green arrows linking up the three corners. (Click here to learn more about using the Trifecta Checkup.)

Trifectacheckup_img

The visual design of the Causes of Death chart is not under question, and the intended message of the author is clearly articulated in the text. Our concern is that the reader must go outside the graphic to learn the full message. This suggests a problem related to the syncing between the visual design and the message (the QV edge).

By contrast, in the Color Blindness graphic, the data are not under question, nor is the use of pictograms. Our concern is how the data got turned into figurines. This suggests a problem related to the syncing between the data and the visual (the DV edge).

***

When you complain about a misleading chart, or a chart being misinterpreted, what do you really mean? Is it a visual design problem? a data problem? Or is it a syncing problem between two components?


The Periodic Table, a challenge in information organization

Reader Chris P. points me to this article about the design of the Periodic Table. I then learned that 2019 is the “International Year of the Periodic Table,” according to the United Nations.

Here is the canonical design of the Periodic Table that science students are familiar with.

Wiki-Simple_Periodic_Table_Chart-en.svg

(Source: Wikipedia.)

The Periodic Table is an exercise of information organization and display. It's about adding structure to over 100 elements, so as to enhance comprehension and lookup. The canonical tabular design has columns and rows. The columns (Groups) impose a primary classification; the rows (Periods) provide a secondary classification. The elements also follow an aggregate order, which is traced by reading from top left to bottom right. The row structure makes clear the "periodicity" of the elements: the "period" of recurrence is not constant, tending to increase with the heavier elements at the bottom.

As with most complex datasets, these elements defy simple organization, due to a curse of dimensionality. The general goal is to put the similar elements closer together. Similarity can be defined in an infinite number of ways, such as chemical, physical or statistical properties. The canonical design, usually attributed to Russian chemist Mendeleev, attained its status because the community accepted his organizing principles, that is, his definitions of similarity (subsequently modified).

***

Of interest, there is a list of unsettled issues. According to Wikipedia, the most common arguments concern:

  • Hydrogen: typically shown as a member of Group 1 (first column), some argue that it doesn’t belong there since it is a gas not a metal. It is sometimes placed in Group 17 (halogens), where it forms a nice “triad” with fluorine and chlorine. Other designers just float hydrogen up top.
  • Helium: typically shown as a member of Group 18 (rightmost column), the  halogens noble gases, it may also be placed in Group 2.
  • Mercury: usually found in Group 12, some argue that it is not a metal like cadmium and zinc.
  • Group 3: other than the first two elements , there are various voices about how to place the other elements in Group 3. In particular, the pairs of lanthanum / actinium and lutetium / lawrencium are sometimes shown in the main table, sometimes shown in the ‘f-orbital’ sub-table usually placed below the main table.

***

Over the years, there have been numerous attempts to re-design the Periodic table. Some of these are featured in the article that Chris sent me (link).

I checked how these alternative designs deal with those unsettled issues. The short answer is they don't settle the issues.

Wide Table (Janet)

The key change is to remove the separation between the main table and the f-orbital (pink) section shown below, as a "footnote". This change clarifies the periodicity of the elements, especially the elongating periods as one moves down the table. This form is also called "long step".

Mg32190402_long_conventional

As a tradeoff, this table requires more space and has an awkward aspect ratio.

In this version of the wide table, the designer chooses to stack lutetium / lawrencium in Group 3 as part of the main table. Other versions place lanthanum / actinium in Group 3 as part of the main table. There are even versions that leave Group 3 with two elements.

Hydrogen, helium and mercury retain their conventional positions.

 

Spiral Design (Hyde)

There are many attempts at spiral designs. Here is one I found on this tumblr:

Hyde_periodictable

The spiral leverages the correspondence between periodic and circular. It is visually more pleasing than a tabular arrangement. But there is a tradeoff. Because of the increasing "diameter" from inner to outer rings, the inner elements are visually constrained compared to the outer ones.

In these spiral diagrams, the designer solves the aspect-ratio problem by creating local loops, sometimes called peninsulas. This is analogous to the footnote table solution, and visually distorts the longer periodicity of the heavier elements.

For Hyde's diagram, hydrogen is floated, helium is assigned to Group 2, and mercury stays in Group 12.

 

Racetrack

I also found this design on the same tumblr, but unattributed. It may have come from Life magazine.

Tumblr_n3tbz5rIKk1s3r80lo3_1280

It's a variant of the spiral. Instead of peninsulas, the designer squeezes the f-orbital section under Group 3, so this is analogous to the wide table solution.

The circular diagrams convey the sense of periodic return but the wide table displays the magnitudes more clearly.

This designer places hydrogen in group 18 forming a triad with fluorine and chlorine. Helium is in Group 17 and mercury in the usual Group 12 .

 

Cartogram (Sheehan)

This version is different.

Elements_relative_abundance

The designer chooses a statistical property (abundance) as the primary organizing principle. The key insight is that the lighter elements in the top few rows are generally more abundant - thus more important in a sense. The cartogram reveals a key weakness of the spiral diagrams that draw the reader's attention to the outer (heavier) elements.

Because of the distorted shapes, the cartogram form obscures much of the other data. In terms of the unsettled issues, hydrogen and helium are placed in Groups 1 and 2. Mercury is in Group 12. Group 3 is squeezed inside the main table rather than shown below.

 

Network

The centerpiece of the article Chris sent me is a network graph.

Periodic-bonds_1024

This is a complete redesign, de-emphasizing the periodicity. It's a result of radically changing the definition of similarity between elements. One barrier when introducing entirely new displays is the tendency of readers to expect the familiar.

***

I found the following articles useful when researching this post:

The Conversation

Royal Chemistry Society

 


Morphing small multiples to investigate Sri Lanka's religions

Earlier this month, the bombs in Sri Lanka led to some data graphics in the media, educating us on the religious tensions within the island nation. I like this effort by Reuters using small multiples to show which religions are represented in which districts of Sri Lanka (lifted from their twitter feed):

Reuters_srilanka_religiondistricts

The key to reading this map is the top legend. From there, you'll notice that many of the color blocks, especially for Muslims and Catholics are well short of 50 percent. The absence of the darkest tints of green and blue conveys important information. Looking at the blue map by itself misleads - Catholics are in the minority in every district except one. In this setup, readers are expected to compare between maps, and between map and legend.

The overall distribution at the bottom of the chart is a nice piece of context.

***

The above design isolates each religion in its own chart, and displays the spatial spheres of influence. I played around with using different ways of paneling the small multiples.

In the following graphic, the panels represent the level of dominance within each district. The first panel shows the districts in which the top religion is practiced by at least 70 percent of the population (if religions were evenly distributed across all districts, we expect 70 percent of each to be Buddhists.) The second panel shows the religions that account for 40 to 70 percent of the district's residents. By this definition, no district can appear on both the left and middle maps. This division is effective at showing districts with one dominant religion, and those that are "mixed".

In the middle panel, the displayed religion represents the top religion in a mixed district. The last panel shows the second religion in each mixed district, and these religions typically take up between 25 and 40 percent of the residents.

Redo_srilankareligiondistricts_v2

The chart shows that other than Buddhists, Hinduism is the only religion that dominates specific districts, concentrated at the northern end of the island. The districts along the east and west coasts and the "neck" are mixed with the top religion accounting for 40 to 70 percent of the residents. By assimilating the second and the third panels, the reader sees the top and the second religions in each of these mixed districts.

***

This example shows why in the Trifecta Checkup, the Visual is a separate corner from the Question and the Data. Both maps utilize the same visual design, in terms of forms and colors and so on, but they deliver different expereinces to readers by answering different questions, and cutting the data differently.

 

P.S. [5/7/2019] Corrected spelling of Hindu.


An exercise in decluttering

My friend Xan found the following chart by Pew hard to understand. Why is the chart so taxing to look at? 

Pew_collegeadmissions

It's packing too much.

I first notice the shaded areas. Shading usually signifies "look here". On this chart, the shading is highlighting the least important part of the data. Since the top line shows applicants and the bottom line admitted students, the shaded gap displays the rejections.

The numbers printed on the chart are growth rates but they confusingly do not sync with the slopes of the lines because the vertical axis plots absolute numbers, not rates. 

Pew_collegeadmissions_growthThe vertical axis presents the total number of applicants, and the total number of admitted students, in each "bucket" of colleges, grouped by their admission rate in 2017. On the right, I drew in two lines, both growth rates of 100%, from 500K to 1 million, and from 1 to 2 million. The slopes are not the same even though the rates of growth are.

Therefore, the growth rates printed on the chart must be read as extraneous data unrelated to other parts of the chart. Attempts to connect those rates to the slopes of the corresponding lines are frustrated.

Another lurking factor is the unequal sizes of the buckets of colleges. There are fewer than 10 colleges in the most selective bucket, and over 300 colleges in the largest bucket. We are unable to interpret properly the total number of applicants (or admissions). The quantity of applications in a bucket depends not just on the popularity of the colleges but also the number of colleges in each bucket.

The solution isn't to resize the buckets but to select a more appropriate metric: the number of applicants per enrolled student. The most selective colleges are attracting about 20 applicants per enrolled student while the least selective colleges (those that accept almost everyone) are getting 4 applicants per enrolled student, in 2017.

As the following chart shows, the number of applicants has doubled across the board in 15 years. This raises an intriguing question: why would a college that accepts pretty much all applicants need more applicants than enrolled students?

Redo_pewcollegeadmissions

Depending on whether you are a school administrator or a student, a virtuous (or vicious) cycle has been realized. For the top four most selective groups of colleges, they have been able to progressively attract more applicants. Since class size did not expand appreciably, more applicants result in ever-lower admit rate. Lower admit rate reduces the chance of getting admitted, which causes prospective students to apply to even more colleges, which further suppresses admit rate. 

 

 

 


Book Preview: How Charts Lie, by Alberto Cairo

Howchartslie_coverIf you’re like me, your first exposure to data visualization was as a consumer. You may have run across a pie chart, or a bar chart, perhaps in a newspaper or a textbook. Thanks to the power of the visual language, you got the message quickly, and moved on. Few of us learned how to create charts from first principles. No one taught us about axes, tick marks, gridlines, or color coding in science or math class. There is a famous book in our field called The Grammar of Graphics, by Leland Wilkinson, but it’s not a For Dummies book. This void is now filled by Alberto Cairo’s soon-to-appear new book, titled How Charts Lie: Getting Smarter about Visual Information.

As a long-time fan of Cairo’s work, I was given a preview of the book, and I thoroughly enjoyed it and recommend it as an entry point to our vibrant discipline.

In the first few chapters of the book, Cairo describes how to read a chart. Some may feel that there is not much to it but if you’re here at Junk Charts, you probably agree with Cairo’s goal. Indeed, it is easy to mis-read a chart. It’s also easy to miss the subtle and brilliant design decisions when one doesn’t pay close attention. These early chapters cover all the fundamentals to become a wiser consumer of data graphics.

***

How Charts Lie will open your eyes to how everyone uses visuals to push agendas. The book is an offshoot of a lecture tour Cairo took during the last year or so, which has drawn large crowds. He collected plenty of examples of politicians and others playing fast and loose with their visual designs. After reading this book, you can’t look at charts with a straight face!

***

In the second half of his book, Cairo moves beyond purely visual matters into analytical substance. In particular, I like the example on movie box office from Chapter 4, titled “How Charts Lie by Displaying Insufficient Data”. Visual analytics of box office receipts seems to be a perennial favorite of job-seekers in data-related fields.

The movie data is a great demonstration of why one needs to statistically adjust data. Cairo explains why Marvel’s Blank Panther is not the third highest-grossing film of all time in the U.S., as reported in the media. That is because gross receipts should be inflation-adjusted. A ticket worth $15 today cost $5 some time ago.

This discussion features a nice-looking graphic, which is a staircase chart showing how much time a #1 movie has stayed in the top position until it is replaced by the next higher grossing film.

Cairo_howchartslie_movies

Cairo’s discussion went further, exploring the number of theaters as a “lurking” variable. For example, Jaws opened in about 400 theaters while Star Wars: The Force Awakens debuted in 10 times as many. A chart showing per-screen inflation-adjusted gross receipts looks much differently from the original chart shown above.

***

Another highlight is Cairo’s analysis of the “cone of uncertainty” chart frequently referenced in anticipation of impending hurricanes in Florida.

Cairo_howchartslie_hurricanes

Cairo and his colleagues have found that “nearly everybody who sees this map reads it wrongly.” The casual reader interprets the “cone” as a sphere of influence, showing which parts of the country will suffer damage from the impending hurricane. In other words, every part of the shaded cone will be impacted to a larger or smaller extent.

That isn’t the designer’s intention! The cone embodies uncertainty, showing which parts of the country has what chance of being hit by the impending hurricane. In the aftermath, the hurricane would have traced one specific path, and that path would have run through the cone if the predictive models were accurate. Most of the shaded cone would have escaped damage.

Even experienced data analysts are likely to mis-read this chart: as Cairo explained, the cone has a “confidence level” of 68% not 95% which is more conventional. Areas outside the cone still has a chance of being hit.

This map clinches the case for why you need to learn how to read charts. And Alberto Cairo, who is a master visual designer himself, is a sure-handed guide for the start of this rewarding journey.

***

Here is Alberto introducing his book.


Pretty circular things

National Geographic features this graphic illustrating migration into the U.S. from the 1850s to the present.

Natgeo_migrationtreerings

 

What to Like

It's definitely eye-catching, and some readers will be enticed to spend time figuring out how to read this chart.

The inset reveals that the chart is made up of little colored strips that mix together. This produces a pleasing effect of gradual color gradation.

The white rings that separate decades are crucial. Without those rings, the chart becomes one long run-on sentence.

Once the reader invests time in learning how to read the chart, the reader will grasp the big picture. One learns, for example, that migrants from the most recent decades have come primarily from Latin America (orange) or Asia (pink). Migrants from Europe (green) and Canada (blue) came in waves but have been muted in the last few decades.

 

What's baffling

Initially, the chart is disorienting. It's not obvious whether the compass directions mean anything. We can immediately understand that the further out we go, the larger numbers of migrants. But what about which direction?

The key appears in the legend - which should be moved from bottom right to top left as it's so important. Apparently, continent/country of origin is coded in the directions.

This region-to-color coding seems to be rough-edged by design. The color mixing discussed above provides a nice artistic effect. Here, the reader finds out that mixing is primarily between two neighboring colors, thus two regions placed side by side on the chart. Thus, because Europe (green) and Asia (pink) are on opposite sides of the rings, those two colors do not mix.

Another notable feature of the chart is the lack of any data other than the decade labels. We won't learn how many migrants arrived in any decade, or the extent of migration as it impacts population size.

A couple of other comments on the circular design.

The circles expand in size for sure as time moves from inside out. Thus, this design only works well for "monotonic" data, that is to say, migration always increases as time passes.

The appearance of the chart is only mildly affected by the underlying data. Swapping the regions of origin changes the appearance of this design drastically.

 

 

 

 

 


Trump resistance chart: cleaning up order, importance, weight, paneling

Morningconsult_gopresistance_trVox featured the following chart when discussing the rise of resistance to President Trump within the GOP.

The chart is composed of mirrored bar charts. On the left side, with thicker pink bars that draw more attention, the design depicts the share of a particular GOP demographic segment that said they'd likely vote for a Trump challenger, according to a Morning Consult poll.

This is the primary metric of interest, and the entire chart is ordered by descending values from African Americans who are most likely (67%) to turn to a challenger to those who strongly support Trump and are the least likely (17%) to turn to someone else.

The right side shows the importance of each demographic, measured by the share of GOP. The relationship between importance and likelihood to defect from Trump is by and large negative but that fact takes a bit of effort to extract from this mirrored bar chart arrangement.

The subgroups are not complete. For example, the only ethnicity featured is African Americans. Age groups are somewhat more complete with under 18 being the only missing category.

The design makes it easy to pick off the most disaffected demographic segments (and the least, from the bottom) but these are disparate segments, possibly overlapping.

***

One challenge of this data is differentiating the two series of proportions. In this design, they use visual cues, like the height and width of the bars, colors, stacked vs not, data labels. Visual variety comes to the rescue.

Also note that the designer compensated for the lack of stacking on the left chart by printing data labels.

***

When reading this chart, I'm well aware that segments like urban residents, income more than $100K, at least college educated are overlapping, and it's hard to interpret the data the way it's been presented.

I wanted to place the different demographics into their natural groups, such as age, income, urbanicity, etc. Such a structure also surfaces demographic patterns, e.g. men are slightly more disaffected than women (not significant), people earning $100K+ are more unhappy than those earning $50K-.

Further, I'd like to make it easier to understand the importance factor - the share of GOP. Because the original form orders the demographics according to the left side, the proportions on the right side are jumbled.

Here is a draft of what I have in mind:

Redo_voxGOPresistance

The widths of the line segments show the importance of each demographic segment. The longest line segments are toward the bottom of the chart (< 40% likely to vote for Trump challenger).

 


McKinsey thinks the data world needs more dataviz talent

Note about last week: While not blogging, I delivered four lectures on three topics over five days: one on the use of data analytics in marketing for a marketing class at Temple; two on the interplay of analytics and data visualization, at Yeshiva and a JMP Webinar; and one on how to live during the Data Revolution at NYU.

This week, I'm back at blogging.

McKinsey publishes a report confirming what most of us already know or experience - the explosion of data jobs that just isn't stopping.

On page 5, it says something that is of interest to readers of this blog: "As data grows more complex, distilling it and bringing it to life through visualization is becoming critical to help make the results of data analyses digestible for decision makers. We estimate that demand for visualization grew roughly 50 percent annually from 2010 to 2015." (my bolding)

The report contains a number of unfortunate graphics. Here's one:

Mckinseyreport_pageiii

I applied my self-sufficiency test by removing the bottom row of data from the chart. Here is what happened to the second circle, representing the fraction of value realized by the U.S. health care industry.

Mckinseyreport_pageiii_inset

What does the visual say? This is one of the questions in the Trifecta Checkup. We see three categories of things that should add up to 100 percent. With a little more effort, we find the two colored categories are each 10% while the white area is 80%. 

But that's not what the data say, because there is only one thing being measured: how much of the potential has already been realized. The two colors is an attempt to visualize the uncertainty of the estimated proportion, which in this case is described as 10 to 20 percent underneath the chart.

If we have to describe what the two colored sections represent: the dark green section is the lower bound of the estimate while the medium green section is the range of uncertainty. The edge between the two sections is the actual estimated proportion (assuming the uncertainty bound is symmetric around the estimate)!

A first attempt to fix this might be to use line segments instead of colored arcs. 

Redo_mckinseyreport_inset_jc_1

The middle diagram emphasizes the mid-point estimate while the right diagram, the range of estimates. Observe how differently these two diagrams appear from the original one shown on the left.

This design only works if the reader perceives the chart as a "racetrack" chart. You have to see the invisible vertical line at the top, which is the starting line, and measure how far around the track has the symbol gone. I have previously discussed why I don't like racetracks (for example, here and here).

***

Here is a sketch of another design:

Redo_mckinseyreport_jc_2

The center figure will have to be moved and changed to a different shape. This design conveys the sense of a goal (at 100%) and how far one is along the path. The uncertainty is represented by wave-like elements that make the exact location of the pointer arrow appear as wavering.