Thoughts on Daniel's fix for dual-axes charts

I've taken a little time to ponder Daniel Z's proposed "fix" for dual-axes charts (link). The example he used is this:

Danielzvinca_dualaxes_linecolumn

In that long post, Daniel explained why he preferred to mix a line with columns, rather than using the more common dual lines construction: to prevent readers from falsely attributing meaning to crisscrossing lines. There are many issues with dual-axes charts, which I won't repeat in this post; one of their most dissatisfying features is the lack of connection between the two vertical scales, and thus, it's pretty easy to manufacture an image of correlation when it doesn't exist. As shown in this old post, one can expand or restrict one of the vertical axes and shift the line up and down to "match" the other vertical axis.

Daniel's proposed fix retains the dual axes, and he even restores the dual lines construction.

Danielzvinca_dualaxes_estimatedy

How is this chart different from the typical dual-axes chart, like the first graph in this post?

Recall that the problem with using two axes is that the designer could squeeze, expand or shift one of the axes in any number of ways to manufacture many realities. What Daniel effectively did here is selecting one specific way to transform the "New Customers" axis (shown in gray).

His idea is to run a simple linear regression between the two time series. Think of fitting a "trendline" in Excel between Revenues and New Customers. Then, use the resulting regression equation to compute an "estimated" revenues based on the New Customers series. The coefficients of this regression equation then determines the degree of squeezing/expansion and shifting applied to the New Customers axis.

The main advantage of this "fix" is to eliminate the freedom to manufacture multiple realities. There is exactly one way to transform the New Customers axis.

The chart itself takes a bit of time to get used to. The actual values plotted in the gray line are "estimated revenues" from the regression model, thus the blue axis values on the left apply to the gray line as well. The gray axis shows the respective customer values. Because we performed a linear fit, each value of estimated revenues correspond to a particular customer value. The gray line is thus a squeezed/expanded/shifted replica of the New Customers line (shown in orange in the first graph). The gray line can then be interpreted on two connected scales, and both the blue and gray labels are relevant.

***

What are we staring at?

The blue line shows the observed revenues while the gray line displays the estimated revenues (predicted by the regression line). Thus, the vertical gaps between the two lines are the "residuals" of the regression model, i.e. the estimation errors. If you have studied Statistics 101, you may remember that the residuals are the components that make up the R-squared, which measures the quality of fit of the regression model. R-squared is the square of r, which stands for the correlation between Customers and the observed revenues. Thus the higher the (linear) correlation between the two time series, the higher the R-squared, the better the regression fit, the smaller the gaps between the two lines.

***

There is some value to this chart, although it'd be challenging to explain to someone who has not taken Statistics 101.

While I like that this linear regression approach is "principled", I wonder why this transformation should be preferred to all others. I don't have an answer to this question yet.

***

Daniel's fix reminds me of a different, but very common, chart.

Forecastvsactualinflationchart

This chart shows actual vs forecasted inflation rates. This chart has two lines but only needs one axis since both lines represent inflation rates in the same range.

We can think of the "estimated revenues" line above as forecasted or expected revenues, based on the actual number of new customers. In particular, this forecast is based on a specific model: one that assumes that revenues is linearly related to the number of new customers. The "residuals" are forecasting errors.

In this sense, I think Daniel's solution amounts to rephrasing the question of the chart from "how closely are revenues and new customers correlated?" to "given the trend in new customers, are we over- or under-performing on revenues?"

Instead of using the dual-axes chart with two different scales, I'd prefer to answer the question by showing this expected vs actual revenues chart with one scale.

This does not eliminate the question about the "principle" behind the estimated revenues, but it makes clear that the challenge is to justify why revenues is a linear function of new customers, and no other variables.

Unlike the dual-axes chart, the actual vs forecasted chart is independent of the forecasting method. One can produce forecasted revenues based on a complicated function of new customers, existing customers, and any other factors. A different model just changes the shape of the forecasted revenues line. We still have two comparable lines on one scale.

 

 

 

 

 


Getting simple charts right

Ian K. submitted this chart on Twitter:

Iankos_chicagocops

The chart comes from a video embedded in this report (link) about Chicago cops leaving their jobs.

Let's start with the basics. This is an example of a simple line chart illustrating a time series of five observations. The vertical axis starts at 10,000 instead of 0. With this choice, the designer wants to focus on the point-to-point change in values, rather than its relation to the initial value.

Every graph has add-ons that assist cognition. On this chart, we have axis labels, gridlines and data labels. Every add-on increases reading time so we should be sparing.

First consider the gridlines. In the following chart, I conduct a self-sufficiency test by removing the data labels from the chart:

Redo_wgn9chicagocops_junkcharts_selfsufficiency

You can see that the last three values present no problems. The first two, especially the first value, are hard to read - because the top gridline is missing! The next chart restores the bounding gridline, so you can see the difference that one small detail can make:

Redo_wgn9chicagocops_junkcharts_addedgridline

***

Next, let's compare the following versions of the chart. The left one contains data labels without gridlines and axis labels. The right one has the gridlines and axis labels but no data labels.

Redo_wgn9chicagocops_gridlinesdatalabels

The left chart prints the entire dataset onto the chart. The reader in essence is reading the raw data. That appears to be the intention of the chart designer as the data labels are in large size, placed inside shiny white boxes. The level of the boxes determines the reader's perception as those catch more of our attention than the dots that actually represent the data.

The right chart highlights the dots and the lines between them. The gridlines are way too thick and heavy so as to distract rather than abet. This chart presumes that the reader isn't that interested in the precise numbers as she is in the trend.

***

As Ian pointed out, one of the biggest problems with this chart is the appearance of even time intervals when all except one of the date values are January. This seemingly innocent detail destroys the chart. The line segments of the chart encodes the pre-post change in the staffing numbers. For most of the line segments, the metric is year-on-year change but the last two line segments on the right show something else: a 19-month change, followed by a 5-month change.

I did the following analysis to understand how big of a staffing problem CPD faces.

Redo_wgn9chicagocops_trendanalysis
First I restored the January 2022 time value, while shifting the Aug 2022 value to its rightful place on the time axis. Next, I added the dashed brown line, which represents a linear extension of the trend seen between January 2020-2021, before the sudden dip. We don't know what the true January 2022 value is but the projected value based on past trend is around 12,200. By August, the projected value is around 11,923, about 300 above the actual value of 11,611. By January 2023, the projected value is almost exactly the same as the actual value.

This linear trending analysis is likely too simplistic but it offers a baseline to start thinking about what the story is. The long-term trend is still down but the apparent dip in 2022 may not be meaningful.

 

 


Longest life, shortest length

Racetrack charts refuse to die. For old time's sake, here is a blog post from 2005 in which I explain why they don't make good dataviz.

Our latest example comes from Visual Capitalist (link), which publishes a fair share of nice dataviz. In this infographics, they feature a racetrack chart, just because the topic is the lifespan of cars.

Visualcapitalist_lifespan_cars_top

The whole infographic has four parts, each a racetrack chart. I'll focus on the first racetrack chart (shown above), which deals with the product category of sedans and hatchbacks.

The first thing I noticed is the reference value of 100,000 miles, which is described as the expected lifespan of a typical car made in the 1970s. This is of dubious value since the top of the page informs us the current relevant reference value is 200,000 miles, which is unlabeled. We surmise that 200,000 miles is indicated by the end of the grey sections of the racetrack. (This is eventually confirmed in the next racettrack chart for SUVs in the second sectiotn of the infographic.)

Now let's zoom in on the brown section of the track. Each of the four sections illustrates the same datum = 100,000 miles and yet they exhibit different lengths. From this, we learn that the data are not encoded in the lengths of these tracks -- but rather the data are to be found in the angle sustained at the centre of the concentric circles. The problem with racetrack charts is that readers are drawn to the lengths of the tracks rather than the angles at the center, which are not explicitly represented.

The Avalon model has the longest life span on this chart, and yet it is shown as the shortest curve.

***

The most baffling part of this chart is not the visual but the analysis methodology.

I quote:

iSeeCars analyzed over 2M used cars on the road between Jan. and Oct. 2022. Rankings are based on the mileage that the top 1% of cars within each model obtained.

According to this blurb, the 245,710 miles number for Avalon is the average mileage found in the top 1% of Avalons within the iSeeCars sample of 2M used cars.

The word "lifespan" strikes me as incorporating a date of death, and yet nothing in the above text indicates that any of the sampled cars are at end of life. The cars they really need are not found in their sample at all.

I suppose taking the top 1% is meant to exclude younger cars but why 1%? Also, this sample completely misses the cars that prematurely died, e.g. the cars that failed after 100,000 miles but before 200,000 miles. This filtering also ensures that newer models are excluded from the sample.

_trifectacheckup_imageIn the Trifecta Checkup, this qualifies as Type DV. The dataset does not answer the question of concern while the visual form distorts the data.


The blue mist

The New York Times printed several charts about Twitter "blue checks," and they aren't one of their best efforts (link).

Blue checks used to be credentials given to legitimate accounts, typically associated with media outlets, celebrities, brands, professors, etc. They are free but must be approved by Twitter. Since Elon Musk acquired Twitter, he turned blue checks into a revenue generator. Yet another subscription service (but you're buying "freedom"!). Anyone can get a blue check for US$8 per month.

[The charts shown here are scanned from the printed edition.]

Nyt_twitterblue_chart1

The first chart is a scatter plot showing the day of joining Twitter and the total number of followers the account has as of early November, 2022. Those are very strange things to pair up on a scatter plot but I get it: the designer could only work with the data that can be pulled down from Twitter's API.

What's wrong with the data? It would seem the interesting question is whether blue checks are associated with number of followers. The chart shows only Twitter Blue users so there is nothing to compare to. The day of joining Twitter is not the day of becoming "Twitter Blue", almost surely not for any user (Nevetheless, the former is not a standard data element released by Twitter). The chart has a built-in time bias since the longer an account exists, one would assume the higher the number of followers (assuming all else equal). Some kind of follower rate (e.g. number of followers per year of existence) might be more informative.

Still, it's hard to know what the chart is saying. That most Blue accounts have fewer than 5,000 followers? I also suspect that they chopped off the top of the chart (outliers) and forgot to mention it. Surely, some of the celebrity accounts have way over 150,000 followers. Another sign that the top of the chart was removed is that an expected funnel effect is not seen. Given the follower count is cumulative from the day of registration, we'd expect the accounts that started in the last few months should have markedly lower counts than those created years ago. (This is even more true if there is a survivorship bias - less successful accounts are more likely to be deleted over time.)

The designer arbitrarily labelled six specific accounts ("Crypto influencer", "HBO fan", etc.) but this feature risks sending readers the wrong message. There might be one HBO fan account that quickly grew to 150,000 followers in just a few months but does the data label suggest to readers that HBO fan accounts as a group tend to quickly attain high number of followers?

***

The second chart, which is an inset of the first, attempts to quantify the effect of the Musk acquisition on the number of "registrations and subscriptions". In the first chart, the story was described as "Elon Musk buys Twitter sparking waves of new users who later sign up for Twitter Blue".

Nyt_twitterblue_chart2

The second chart confuses me. I was trying to figure out what is counted in the vertical axis. This was before I noticed the inset in the first chart, easy to miss as it is tucked into the lower right corner. I had presumed that the axis would be the same as in the first chart since there weren't any specific labels. In that case, I am looking at accounts with 0 to 500 followers, pretty inconsequential accounts. Then, the chart title uses the words "registrations and subscriptions." If the blue dots on this chart also refer to blue-check accounts as in the first chart, then I fail to see how this chart conveys any information about registrations (wbich presumably would include free accounts). As before, new accounts that aren't blue checks won't appear.

Further, to the extent that this chart shows a surge in subscriptions, we are restricted to accounts with fewer than 500 followers, and it's really unclear what proportion of total subscribers is depicted. Nor is it possible to estimate the magnitude of this surge.

Besides, I'm seeing similar densities of the dots across the entire time window between October 2021 and 2022. Perhaps the entire surge is hidden behind the black lines indicating the specific days when Musk announced and completed the acquisition, respectively. If the surge is hiding behind the black vertical lines, then this design manages to block the precise spots readers are supposed to notice.

Here is where we can use the self-sufficiency test. Imagine the same chart without the text. What story would you have learned from the graphical elements themselves? Not much, in my view.

***

The third chart isn't more insightful. This chart purportedly shows suspended accounts, only among blue-check accounts.

Nyt_twitterblue_chart3

From what I could gather (and what I know about Twitter's API), the chart shows any Twitter Blue account that got suspended at any time. For example, all the black open circles occurring prior to October 27, 2022 represent suspensions by the previous management, and presumably have nothing to do with Elon Musk, or his decision to turn blue checks into a subscription product.

There appears to be a cluster of suspensions since Musk took over. I am not sure what that means. Certainly, it says he's not about "total freedom". Most of these suspended accounts have fewer than 50 followers, and only been around for a few weeks. And as before, I'm not sure why the analyst decided to focus on accounts with fewer than 500 followers.

What could have been? Given the number of suspended accounts are relatively small, an interesting analysis would be to form clusters of suspended accounts, and report on the change in what types of accounts got suspended before and after the change of management.

***

The online article (link) is longer, filling in some details missing from the printed edition.

There is one view that shows the larger accounts:

Nyt_twitterblue_largestaccounts

While more complete, this view isn't very helpful as the biggest accounts are located in the sparsest area of the chart. The data labels again pick out strange accounts like those of adult film stars and an Arabic news site. It's not clear if the designer is trying to tell us that most of Twitter Blue accounts belong to those categories.

***
See here for commentary on other New York Times graphics.

 

 

 

 


Energy efficiency deserves visual efficiency

Long-time contributor Aleksander B. found a good one, in the World Energy Outlook Report, published by IEA (International Energy Agency).

Iea_balloonchart_emissions

The use of balloons is unusual, although after five minutes, I decided I must do some research to have any hope of understanding this data visualization.

A lot is going on. Below, I trace my own journey through this chart.

The text on the top left explains that the chart concerns emissions and temperature change. The first set of balloons (the grey ones) includes helpful annotations. The left-right position of the balloons indicates time points, in 10-year intervals except for the first.

The trapezoid that sits below the four balloons is more mysterious. It's labelled "median temperature rise in 2100". I debate two possibilities: (a) this trapezoid may serve as the fifth balloon, extending the time series from 2050 to 2100. This interpretation raises a couple of questions: why does the symbol change from balloon to trapezoid? why is the left-right time scale broken? (b) this trapezoid may represent something unrelated to the balloons. This interpretation also raises questions: its position on the horizontal axis still breaks the time series; and  if the new variable is "median temperature rise", then what determines its location on the chart?

That last question is answered if I move my glance all the way to the right edge of the chart where there are vertical axis labels. This axis is untitled but the labels shown in degree Celsius units are appropriate for "median temperature rise".

Turning to the balloons, I wonder what the scale is for the encoded emissions data. This is also puzzling because only a few balloons wear data labels, and a scale is nowhere to be found.

Iea_balloonchart_emissions_legend

The gridlines suggests that the vertical location of the balloons is meaningful. Tracing those gridlines to the right edge leads me back to the Celsius scale, which seems unrelated to emissions. The amount of emissions is probably encoded in the sizes of the balloons although none of these four balloons have any data labels so I'm rather flustered. My attention shifts to the colored balloons, a few of which are labelled. This confirms that the size of the balloons indeed measures the amount of emissions. Nevertheless, it is still impossible to gauge the change in emissions for the 10-year periods.

The colored balloons rising above, way above, the gridlines is an indication that the gridlines may lack a relationship with the balloons. But in some charts, the designer may deliberately use this device to draw attention to outlier values.

Next, I attempt to divine the informational content of the balloon strings. Presumably, the chart is concerned with drawing the correlation between emissions and temperature rise. Here I'm also stumped.

I start to look at the colored balloons. I've figured out that the amount of emissions is shown by the balloon size but I am still unclear about the elevation of the balloons. The vertical locations of these balloons change over time, hinting that they are data-driven. Yet, there is no axis, gridline, or data label that provides a key to its meaning.

Now I focus my attention on the trapezoids. I notice the labels "NZE", "APS", etc. The red section says "Pre-Paris Agreement" which would indicate these sections denote periods of time. However, I also understand the left-right positions of same-color balloons to indicate time progression. I'm completely lost. Understanding these labels is crucial to understanding the color scheme. Clearly, I have to read the report itself to decipher these acronyms.

The research reveals that NZE means "net zero emissions", which is a forecasting scenario - an utterly unrealistic one - in which every country is assumed to fulfil fully its obligations, a sort of best-case scenario but an unattainable optimum. APS and STEPS embed different assumptions about the level of effort countries would spend on reducing emissions and tackling global warming.

At this stage, I come upon another discovery. The grey section is missing any acronym labels. It's actually the legend of the chart. The balloon sizes, elevations, and left-right positions in the grey section are all arbitrary, and do not represent any real data! Surprisingly, this legend does not contain any numbers so it does not satisfy one of the traditional functions of a legend, which is to provide a scale.

There is still one final itch. Take a look at the green section:

Iea_balloonchart_emissions_green

What is this, hmm, caret symbol? It's labeled "Net Zero". Based on what I have been able to learn so far, I associate "net zero" to no "emissions" (this suggests they are talking about net emissions not gross emissions). For some reason, I also want to associate it with zero temperature rise. But this is not to be. The "net zero" line pins the balloon strings to a level of roughly 2.5 Celsius rise in temperature.

Wait, that's a misreading of the chart because the projected net temperature increase is found inside the trapezoid, meaning at "net zero", the scientists expect an increase in 1.5 degrees Celsius. If I accept this, I come face to face with the problem raised above: what is the meaning of the vertical positioning of the balloons? There must be a reason why the balloon strings are pinned at 2.5 degrees. I just have no idea why.

I'm also stealthily presuming that the top and bottom edges of the trapezoids represent confidence intervals around the median temperature rise values. The height of each trapezoid appears identical so I'm not sure.

I have just learned something else about this chart. The green "caret" must have been conceived as a fully deflated balloon since it represents the value zero. Its existence exposes two limitations imposed by the chosen visual design. Bubbles/circles should not be used when the value of zero holds significance. Besides, the use of balloon strings to indicate four discrete time points breaks down when there is a scenario which involves only three buoyant balloons.

***

The underlying dataset has five values (four emissions, one temperature rise) for four forecasting scenarios. It's taken a lot more time to explain the data visualization than to just show readers those 20 numbers. That's not good!

I'm sure the designer did not set out to confuse. I think what happened might be that the design wasn't shown to potential readers for feedback. Perhaps they were shown only to insiders who bring their domain knowledge. Insiders most likely would not have as much difficulty with reading this chart as did I.

This is an important lesson for using data visualization as a means of communications to the public. It's easy for specialists to assume knowledge that readers won't have.

For the IEA chart, here is a list of things not found explicitly on the chart that readers have to know in order to understand it.

  • Readers have to know about the various forecasting scenarios, and their acronyms (APS, NZE, etc.). This allows them to interpret the colors and section titles on the chart, and to decide whether the grey section is missing a scenario label, or is a legend.
  • Since the legend does not contain any scale information, neither for the balloon sizes nor for the temperatures, readers have to figure out the scales on their own. For temperature, they first learn from the legend that the temperature rise information is encoded in the trapezoid, then find the vertical axis on the right edge, notice that this axis has degree Celsius units, and recognize that the Celsius scale is appropriate for measuring median temperature rise.
  • For the balloon size scale, readers must resist the distracting gridlines around the grey balloons in the legend, notice the several data labels attached to the colored balloons, and accept that the designer has opted not to provide a proper size scale.

Finally, I still have several unresolved questions:

  • The horizontal axis may have no meaning at all, or it may only have meaning for emissions data but not for temperature
  • The vertical positioning of balloons probably has significance, or maybe it doesn't
  • The height of the trapezoids probably has significance, or maybe it doesn't

 

 


Finding the right context to interpret household energy data

Bloomberg_energybillBloomberg's recent article on surging UK household energy costs, projected over this winter, contains data about which I have long been intrigued: how much energy does different household items consume?

A twitter follower alerted me to this chart, and she found it informative.

***
If the goal is to pick out the appliances and estimate the cost of running them, the chart serves its purpose. Because the entire set of data is printed, a data table would have done equally well.

I learned that the mobile phone costs almost nothing to charge: 1 pence for six hours of charging, which is deemed a "single use" which seems double what a full charge requires. The games console costs 14 pence for a "single use" of two hours. That might be an underestimate of how much time gamers spend gaming each day.

***

Understanding the design of the chart needs a bit more effort. Each appliance is measured by two metrics: the number of hours considered to be "single use", and a currency value.

It took me a while to figure out how to interpret these currency values. Each cost is associated with a single use, and the duration of a single use increases as we move down the list of appliances. Since the designer assumes a fixed cost of electicity (shown in the footnote as 34p per kWh), at first, it seems like the costs should just increase from top to bottom. That's not the case, though.

Something else is driving these numbers behind the scene, namely, the intensity of energy use by appliance. The wifi router listed at the bottom is turned on 24 hours a day, and the daily cost of running it is just 6p. Meanwhile, running the fridge and freezer the whole day costs 41p. Thus, the fridge&freezer consumes electricity at a rate that is almost 7 times higher than the router.

The chart uses a split axis, which artificially reduces the gap between 8 hours and 24 hours. Here is another look at the bottom of the chart:

Bloomberg_energycost_bottom

***

Let's examine the choice of "single use" as a common basis for comparing appliances. Consider this:

  • Continuous appliances (wifi router, refrigerator, etc.) are denoted as 24 hours, so a daily time window is also implied
  • Repeated-use appliances (e.g. coffee maker, kettle) may be run multiple times a day
  • Infrequent use appliances may be used less than once a day

I prefer standardizing to a "per day" metric. If I use the microwave three times a day, the daily cost is 3 x 3p = 9 p, which is more than I'd spend on the wifi router, run 24 hours. On the other hand, I use the washing machine once a week, so the frequency is 1/7, and the effective daily cost is 1/7 x 36 p = 5p, notably lower than using the microwave.

The choice of metric has key implications on the appearance of the chart. The bubble size encodes the relative energy costs. The biggest bubbles are in the heating category, which is no surprise. The next largest bubbles are tumble dryer, dishwasher, and electric oven. These are generally not used every day so the "per day" calculation would push them lower in rank.

***

Another noteworthy feature of the Bloomberg chart is the split legend. The colors divide appliances into five groups based on usage category (e.g. cleaning, food, utility). Instead of the usual color legend printed on a corner or side of the chart, the designer spreads the category labels around the chart. Each label is shown the first time a specific usage category appears on the chart. There is a presumption that the reader scans from top to bottom, which is probably true on average.

I like this arrangement as it delivers information to the reader when it's needed.

 

 

 


Trying too hard

Today, I return to the life expectancy graphic that Antonio submitted. In a previous post, I looked at the bumps chart. The centerpiece of that graphic is the following complicated bar chart.

Aburto_covid_lifeexpectancy

Let's start with the dual axes. On the left, age, and on the right, year of birth. I actually like this type of dual axes. The two axes present two versions of the same scale so the dual axes exist without distortion. It just allows the reader to pick which scale they want to use.

It baffles me that the range of each bar runs from 2.5 years to 7.5 years or 7.5 years to 2.5 years, with 5 or 10 years situated in the middle of each bar.

Reading the rest of the chart is like unentangling some balled up wires. The author has created a statistical model that attributes cause of death to male life expectancy in such a way that you can take the difference in life expectancy between two time points, and do a kind of waterfall analysis in which each cause of death either adds to or subtracts from the prior life expectancy, with the sum of these additions and substractions leading to the end-of-period life expectancy.

The model is complicated enough, and the chart doesn't make it any easier.

The bars are rooted at the zero value. The horizontal axis plots addition or substraction to life expectancy, thus zero represents no change during the period. Zero does not mean the cause of death (e.g. cancer) does not contribute to life expectancy; it just means the contribution remains the same.

The changes to life expectancy are shown in units of months. I'd prefer to see units of years because life expectancy is almost always given in years. Using years turn 2.5 months into 0.2 years which is a fraction, but it allows me to see the impact on the reported life expectancy without having to do a month-to-year conversion.

The chart highlights seven causes of death with seven different colors, plus gray for others.

What really does a number on readers is the shading, which adds another layer on top of the hues. Each color comes in one of two shading, referencing two periods of time. The unshaded bar segments concern changes between 2010 and "2019" while the shaded segments concern changes between "2019" and 2020. The two periods are chosen to highlight the impact of COVID-19 (the red-orange color), which did not exist before "2019".

Let's zoom in on one of the rows of data - the 72.5 to 77.5 age group.

Screen Shot 2022-09-14 at 1.06.59 PM

COVID-19 (red-orange) has a negative impact on life expectancy and that's the easy one to see. That's because COVID-19's contribution as a cause of death is exactly zero prior to "2019". Thus, the change in life expectancy is a change from zero. This is not how we can interpret any of the other colors.

Next, we look at cancer (blue). Since this bar segment sits on the right side of zero, cancer has contributed positively to change in life expectancy between 2010 and 2020. Practically, that means proportionally fewer people have died from cancer. Since the lengths of these bar segments correspond to the relative value, not absolute value, of life expectancy, longer bars do not necessarily indicate more numerous deaths.

Now the blue segment is actually divided into two parts, the shaded and not shaded. The not-shaded part is for the period "2019" to 2020 in the first year of the COVID-19 pandemic. The shaded part is for the period 2010 to "2019". It is a much wider span but it also contains 9 years of changes versus "1 year" so it's hard to tell if the single-year change is significantly different from the average single-year change of the past 9 years. (I'm using these quotes because I don't know whether they split the year 2019 in the middle since COVID-19 didn't show up till the end of that year.)

Next, we look at the yellow-brown color correponding to CVD. The key feature is that this block is split into two parts, one positive, one negative. Prior to "2019", CVD has been contributing positively to life expectancy changes while after "2019", it has contributed negatively. This observation raises some questions: why would CVD behave differently with the arrival of the pandemic? Are there data problems?

***

A small multiples design - splitting the period into two charts - may help here. To make those two charts comparable, I'd suggest annualizing the data so that the 9-year numbers represent the average annual values instead of the cumulative values.

 

 


Another reminder that aggregate trends hide information

The last time I looked at the U.S. employment situation, it was during the pandemic. The data revealed the deep flaws of the so-called "not in labor force" classification. This classification is used to dehumanize unemployed people who are declared "not in labor force," in which case they are neither employed nor unemployed -- just not counted at all in the official unemployment (or employment) statistics.

The reason given for such a designation was that some people just have no interest in working, or even looking for a job. Now they are not merely discouraged - as there is a category of those people. In theory, these people haven't been looking for a job for so long that they are no longer visible to the bean counters at the Bureau of Labor Statistics.

What happened when the pandemic precipitated a shutdown in many major cities across America? The number of "not in labor force" shot up instantly, literally within a few weeks. That makes a mockery of the reason for such a designation. See this post for more.

***

The data we saw last time was up to April, 2020. That's more than two years old.

So I have updated the charts to show what has happened in the last couple of years.

Here is the overall picture.

Junkcharts_unemployment_notinLFparttime_all_2

In this new version, I centered the chart at the 1990 data. The chart features two key drivers of the headline unemployment rate - the proportion of people designated "invisible", and the proportion of those who are considered "employed" who are "part-time" workers.

The last two recessions have caused structural changes to the labor market. From 1990 to late 2000s, which included the dot-com bust, these two metrics circulated within a small area of the chart. The Great Recession of late 2000s led to a huge jump in the proportion called "invisible". It also pushed the proportion of part-timers to all0time highs. The proportion of part-timers has fallen although it is hard to interpret from this chart alone - because if the newly invisible were previously part-time employed, then the same cause can be responsible for either trend.

_numbersense_bookcoverReaders of Numbersense (link) might be reminded of a trick used by school deans to pump up their US News rankings. Some schools accept lots of transfer students. This subpopulation is invisible to the US News statisticians since they do not factor into the rankings. The recent scandal at Columbia University also involves reclassifying students (see this post).

Zooming in on the last two years. It appears that the pandemic-related unemployment situation has reversed.

***

Let's split the data by gender.

American men have been stuck in a negative spiral since the 1990s. With each recession, a higher proportion of men are designated BLS invisibles.

Junkcharts_unemployment_notinLFparttime_men_2

In the grid system set up in this scatter plot, the top right corner is the worse of all worlds - the work force has shrunken and there are more part-timers among those counted as employed. The U.S. men are not exiting this quadrant any time soon.

***
What about the women?

Junkcharts_unemployment_notinLFparttime_women_2

If we compare 1990 with 2022, the story is not bad. The female work force is gradually reaching the same scale as in 1990 while the proportion of part-time workers have declined.

However, celebrating the above is to ignore the tremendous gains American women made in the 1990s and 2000s. In 1990, only 58% of women are considered part of the work force - the other 42% are not working but they are not counted as unemployed. By 2000, the female work force has expanded to include about 60% with similar proportions counted as part-time employed as in 1990. That's great news.

The Great Recession of the late 2000s changed that picture. Just like men, many women became invisible to BLS. The invisible proportion reached 44% in 2015 and have not returned to anywhere near the 2000 level. Fewer women are counted as part-time employed; as I said above, it's hard to tell whether this is because the women exiting the work force previously worked part-time.

***

The color of the dots in all charts are determined by the headline unemployment number. Blue represents low unemployment. During the 1990-2022 period, there are three moments in which unemployment is reported as 4 percent or lower. These charts are intended to show that an aggregate statistic hides a lot of information. The three times at which unemployment rate reached historic lows represent three very different situations, if one were to consider the sizes of the work force and the number of part-time workers.

 

P.S. [8-15-2022] Some more background about the visualization can be found in prior posts on the blog: here is the introduction, and here's one that breaks it down by race. Chapter 6 of Numbersense (link) gets into the details of how unemployment rate is computed, and the implications of the choices BLS made.

P.S. [8-16-2022] Corrected the axis title on the charts (see comment below). Also, added source of data label.


Dataviz is good at comparisons if we make the right comparisons

In an article about gas prices around the world, the Washington Post uses the following bar chart (link):

Wpost_gasprices_highincome

There are a few wrinkles in this one compared to the most generic bar chart one can produce:

Redo_wpost_gasprices_0

(The numbers on my chart are not the same as Washington Post's. That's because the data vendor charges for data, except for the most recent week. So, my data is from a different week.)

_trifectacheckup_imageThe gas prices are not expressed in dollars but a transformation turns prices into a cost-effectiveness metric: miles per dollar, or more precisely, miles per $40 dollars of gas. The metric has a reverse direction - the higher the price, the lower the miles. The data transformation belongs to the D corner of the Trifecta Checkup framework (link). Depending on how one poses the Q(uestion) of the chart, the shift from dollars to miles can bring the Q and the D in sync.

In the V(isual) corner, the designer embellishes the bars. A car icon is placed at the tip of each bar while the bar itself is turned into a wavy path, symbolizing a dirt path. The driving metaphor is in full play. In fact, the video makes the most out of it. There is no doubt that the embellishment has turned a mere scientific presentation into a form of entertainment.

***

Did the embellishment harm visual clarity? For the most part, no.

The worst it can get is when they compared U.S. and India/South Africa:

Redo_wpost_gasprices_indiasouthafrica

The left column shows the original charts from the article. In  both charts, the two cars are so close together that it is impossible to learn the scale of the difference. The amount of difference is a fraction of the width of a car icon.

The right column shows the "self-sufficiency test". Imagine the data labels are not on the chart. What we learn is that if we wanted to know how big of a gap is between the two countries, when reading the charts on the left, we are relying on the data labels, not the visual elements. On the right side, if we really want to learn the gaps, we have to look through the car icons to find the tips of the bars!

This discussion does not necessarily doom the appealing chart. If the message one wants to send with the India/South Afrcia charts is that there is negligible difference between them, then it is not crucial to present the precise differences in prices.

***

The real problem with this dataviz is in the D corner. Comparing countries is hard.

As shown above, by the miles per $40 spend metric, U.S. and India are rated essentially the same. So is the average American and the average Indian suffering equally?

Far from it. The clue comes from the aggregate chart, in which countries are divided into three tiers: high income, upper middle income and lower middle income. The U.S. belongs to the high-income tier while India falls into the lower-middle-income tier.

The cost of living in India is much lower than in the US. Forty dollars is a much bigger chunk of an Indian paycheck than an American one.

To adjust for cost of living, economists use a PPP (purchasing power parity) value. The following chart shows the difference:

Redo_wpost_gasprices_1

The right graph contains cost-of-living adjustments. It shows a completely different picture. Nominally (left chart), the price of gas in about the same in dollar terms between U.S. and India. In terms of cost of living, gas is actually 5 times more expensive in India. Thus, the adjusted miles per $40 gas number is much smaller for India than the unadjusted. (Because PPP is relative to U.S. prices, the U.S. numbers are not affected.)

PPP is not the end-all here. According to the Economic Times (India), only 22 out of 1,000 Indians own cars, compared to 980 out of 1,000 Americans. Think about the implication of using any statistic that averages the entire population!

***

Why is gas more expensive in California than the U.S. average? The talking point I keep hearing is environmental regulations. Gas prices may be higher in Europe for a similar reason. Residents in those places may be willing to pay higher prices because they get satisfaction from playing their part in preserving the planet for future generations.

The footnote discloses this not-trivial issue.

Wpost_gasprices_footnote

When converting from dollars per gallon/liter into miles per $40, we need data on miles per gallon/liter. Americans notoriously drive cars (trucks, SUVs, etc.) that have much lower mileage than those driven by other countries. However, this factor is artificially removed by assuming the same car with 32 mpg on all countries. A quick hop to the BTS website tells us that the average mpg of American cars is a third of that assumption. [See note below.]

Ignoring cross-country comparisons for the time being, the true number for U.S. is not 247 miles per $40 spent on gas as claimed. It is a third of that value: 82 miles per $40 spent.

It's tough to find data on fuel economy of all passenger cars, not just new passenger cars. I found Australia's number, which is 21 mpg. So this brings the miles per $40 number down from about 230 to 115. These are not small adjustments.

Washington Post's analysis paints a simplistic picture that presupposes that price is the only thing people care about. I call this issue xyopia. It's when the analyst frames the problem as factor x explaining outcome y, and when factor x is not the only, and frequently not even the most important, factor affecting y.

More on xyopia.

More discussion of Washington Post graphics.

 

[P.S. 7-25-2022. Reader Cody Curtis pointed out in the comments that the Bureau of Transportation Statistics report was using km/liter as units, not miles per gallon. The 10 km/liter number for average cars is roughly 23 mpg. I'll leave the text as is in the post as the larger point is valid: that there is variation in average fuel economy between nations - partly due to environemental regulation and consumer behavior - and thus, a proper comparison requires adjusting for this factor.]


A German obstacle course

Tagesschau_originalA twitter user sent me this chart from Germany.

It came with a translation:

"Explanation: The chart says how many car drivers plan to purchase a new state-sponsored ticket for public transport. And of those who do, how many plan to use their car less often."

Because visual language should be universal, we shouldn't be deterred by not knowing German.

The structure of the data can be readily understood: we expect three values that add up to 100% from the pie chart. The largest category accounts for 58% of the data, followed by the blue category (40%). The last and smallest category therefore has 2% of the data.

The blue category is of the most interest, and the designer breaks that up into four sub-groups, three of which are roughly similarly popular.

The puzzle is the identities of these categories.

The sub-categories are directly labeled so these are easy for German speakers. From a handy online translator, these labels mean "definitely", "probably", "rather not", "definitely not". Well, that's not too helpful when we don't know what the survey question is.

According to our correspondent, the question should be "of those who plan to buy the new ticket, how many plan to use their car less often?"

I suppose the question is found above the column chart under the car icon. The translator dutifully outputs "Thus rarer (i.e. less) car use". There is no visual cue to let readers know we are supposed to read the right hand side as a single column. In fact, for this reader, I was reading horizontally from top to bottom.

Now, the two icons on the left and the middle of the top row should map to not buying and buying the ticket. The check mark and cross convey that message. But... what do these icons map to on the chart below? We get no clue.

In fact, the will-buy ticket group is the 40% blue category while the will-not group is the 58% light gray category.

What about the dark gray thin sector? Well, one needs to read the fine print. The footnote says "I don't know/ no response".

Since this group is small and uninformative, it's fine to push it into the footnote. However, the choice of a dark color, and placing it at the 12-o'clock angle of the pie chart run counter to de-emphasizing this category!

Another twitter user visually depicts the journey we take to understand this chart:

Tagesschau_reply

The structure of the data is revealed better with something like this:

Redo_tagesschau_newticket

The chart doesn't need this many colors but why not? It's summer.