Consumption patterns during the pandemic

The impact of Covid-19 on the economy is sharp and sudden, which makes for some dramatic data visualization. I enjoy reading the set of charts showing consumer spending in different categories in the U.S., courtesy of Visual Capitalist.

The designer did a nice job cleaning up the data and building a sequential story line. The spending are grouped by categories such as restaurants and travel, and then sub-categories such as fast food and fine dining.

Spending is presented as year-on-year change, smoothed.

Here is the chart for the General Commerce category:

Visualcapitalist_spending_generalcommerce

The visual design is clean and efficient. Even too sparse because one has to keep returning to the top to decipher the key events labelled 1, 2, 3, 4. Also, to find out that the percentages express year-on-year change, the reader must scroll to the bottom, and locate a footnote.

As you move down the page, you will surely make a stop at the Food Delivery category, noting that the routine is broken.

Visualcapitalist_spending_fooddelivery

I've featured this device - an element of surprise - before. Remember this Quartz chart that depicts drinking around the world (link).

The rule for small multiples is to keep the visual design identical but vary the data from chart to chart. Here, the exceptional data force the vertical axis to extend tremendously.

This chart contains a slight oversight - the red line should be labeled "Takeout" because food delivery is the label for the larger category.

Another surprise is in store for us in the Travel category.

Visualcapitalist_spending_travel

I kept staring at the Cruise line, and how it kept dipping below -100 percent. That seems impossible mathematically - unless these cardholders are receiving more refunds than are making new bookings. Not only must the entire sum of 2019 bookings be wiped out, but the records must also show credits issued to these credit (or debit) cards. It's curious that the same situation did not befall the airlines. I think many readers would have liked to see some text discussing this pattern.

***

Now, let me put on a data analyst's hat, and describe some thoughts that raced through my head as I read these charts.

Data analysis is hard, especially if you want to convey the meaning of the data.

The charts clearly illustrate the trends but what do the data reveal? The designer adds commentary on each chart. But most of these comments count as "story time." They contain speculation on what might be causing the trend but there isn't additional data or analyses to support the storyline. In the General Commerce category, the 50 to 100 percent jump in all subcategories around late March is attributed to people stockpiling "non-perishable food, hand sanitizer, and toilet paper". That might be true but this interpretation isn't supported by credit or debit card data because those companies do not have details about what consumers purchased, only the total amount charged to the cards. It's a lot more work to solidify these conclusions.

A lot of data do not mean complete or unbiased data.

The data platform provided data on 5 million consumers. We don't know if these 5 million consumers are representative of the 300+ million people in the U.S. Some basic demographic or geographic analysis can help establish the validity. Strictly speaking, I think they have data on 5 million card accounts, not unique individuals. Most Americans use more than one credit or debit cards. It's not likely the data vendor have a full picture of an individual's or a family's spending.

It's also unclear how much of consumer spending is captured in this dataset. Credit and debit cards are only one form of payment.

Data quality tends to get worse.

One thing that drives data analyst nuts. The spending categories are becoming blurrier. In the last decade or so, big business has come to dominate the American economy. Big business, with bipartisan support, has grown by (a) absorbing little guys, and (b) eliminating boundaries between industry sectors. Around me, there is a Walgreens, several Duane Reades, and a RiteAid. They currently have the same owner, and increasingly offer the same selection. In the meantime, Walmart (big box), CVS (pharmacy), Costco (wholesale), etc. all won regulatory relief to carry groceries, fresh foods, toiletries, etc. So, while CVS or Walgreens is classified as a pharmacy, it's not clear that what proportion of the spending there is for medicines. As big business grows, these categories become less and less meaningful.


Hope and reality in one Georgia chart

Over the weekend, Georgia's State Health Department agitated a lot of people when it published the following chart:

Georgia_top5counties_covid19

(This might have appeared a week ago as the last date on the chart is May 9 and the title refers to "past 15 days".)

They could have avoided the embarrassment if they had read my article at DataJournalism.com (link). In that article, I lay out a set of the "unspoken conventions," things that visual designers are, or should be, doing more or less in their sleep. Under the section titled "Order", I explain the following two "rules":

  • Place values in the natural order when it is available
  • Retain the same order across all plots in a panel of charts

In the chart above, the natural order for the horizontal (time) axis is time running left to right. The order chosen by the designer  is roughly but not precisely decreasing height of the tallest column in each daily group. Many observers suggested that the columns were arranged to give the appearance of cases dropping over time.

Within each day, the counties are ordered in decreasing number of new cases. The title of the chart reads "number of cases over time" which sounds like cumulative cases but it's not. The "lead" changed hands so many times over the 15 days, meaning the data sequence was extremely noisy, which would be unlikely for cumulative cases. There are thousands of cases in each of these counties by May. Switching the order of the columns within each daily group defeats the purpose of placing these groups side-by-side.

Responding to the bad press, the department changed the chart design for this week's version:

Georgia_top5counties_covid19_revised

This chart now conforms to the two spoken rules described above. The time axis runs left to right, and within each group of columns, the order of the counties is maintained.

The chart is still very noisy, with no apparent message.

***

Next, I'd like to draw your attention to a Data issue. Notice that the 15-day window has shifted. This revised chart runs from May 2 to May 16, which is this past Saturday. The previous chart ran from Apr 26 to May 9. 

Here's the data for May 8 and 9 placed side by side.

Junkcharts_georgia_covid19_cases

There is a clear time lag of reporting cases in the State of Georgia. This chart should always exclude the last few days. The case counts keep going up until it stabilizes. The same mistake occurs in the revised chart - the last two days appear as if new cases have dwindled toward zero when in fact, it reflects a lag in reporting.

The disconnect between the Question being posed and the quality of the Data available dooms this visualization. It is not possible to provide a reliable assessment of the "past 15 days" when during perhaps half of that period, the cases are under-counted.

***

Nyt_tryingtobefashionableThis graphical distortion due to "immature" data has become very commonplace in Covid-19 graphics. It's similar to placing partial-year data next to full-year results, without calling out the partial data.

The following post from the ancient past (2005!) about a New York Times graphic shows that calling out this data problem does not actually solve it. It's a less-bad kind of thing.

The coronavirus data present more headaches for graphic designers than the financial statistics. Because of accounting regulations, we know that only the current quarter's data are immature. For Covid-19 reporting, the numbers are being adjusted for days and weeks.

Practically all immature counts are under-estimates. Over time, more cases are reported. Thus, any plots over time - if unadjusted - paint a misleading picture of declining counts. The effect of the reporting lag is predictable, having a larger impact as we run from left to right in time. Thus, even if the most recent data show a downward trend, it can eventually mean anything: down, flat or up. This is not random noise though - we know for certain of the downward bias; we just don't know the magnitude of the distortion for a while.

Another issue that concerns coronavirus reporting but not financial reporting is inconsistent standards across counties. Within a business, if one were to break out statistics by county, the analysts would naturally apply the same counting rules. For Covid-19 data, each county follows its own set of rules, not just  how to count things but also how to conduct testing, and so on.

Finally, with the politics of re-opening, I find it hard to trust the data. Reported cases are human-driven data - by changing the number of tests, by testing different mixes of people, by delaying reporting, by timing the revision of older data, by explicit manipulation, ...., the numbers can be tortured into any shape. That's why it is extremely important that the bean-counters are civil servants, and that politicians are kept away. In the current political environment, that separation between politics and statistics has been breached.

***

Why do we have low-quality data? Human decisions, frequently political decisions, adulterate the data. Epidemiologists are then forced to use the bad data, because that's what they have. Bad data lead to bad predictions and bad decisions, or if the scientists account for the low quality, predictions with high levels of uncertainty. Then, the politicians complain that predictions are wrong, or too wide-ranging to be useful. If they really cared about those predictions, they could start by being more transparent about reporting and more proactive at discovering and removing bad accounting practices. The fact that they aren't focused on improving the data gives the game away. Here's a recent post on the politics of data.

 


The hidden bad assumption behind most dual-axis time-series charts

[Note: As of Monday afternoon, Typepad is having problems rendering images. Please try again later if the charts are not loading properly.]

DC sent me the following chart over Twitter. It supposedly showcases one sector that has bucked the economic collapse, and has conversely been boosted by the stay-at-home orders around the world.

Covid19-pornhubtraffic


At first glance, I was drawn to the yellow line and the axis title on the right side. I understood the line to depict the growth rate in traffic "vs a normal day". The trend is clear as day. Since March 10 or so, the website has become more popular by the week.

For a moment, I thought the thin black line was a trendline that fits the rather ragged traffic growth data. But looking at the last few data points, I was afraid it was a glove that didn't fit. That's when I realized this is a dual-axis chart. The black line shows the worldwide total Covid-19 cases, with the axis shown on the left side.

As with any dual-axis charts, you can modify the relationship between the two scales to paint a different picture.

This next chart says that the site traffic growth lagged Covid-19 growth until around March 14.

Junkcharts_ph_dualaxis1

This one gives an ambiguous picture. One can't really say there is a strong correlation between the two time series.

Junkcharts_ph_dualaxis2

***

Now, let's look at the chart from the DATA corner of the Trifecta Checkup (link). The analyst selected definitions that are as far apart as possible. So this chart gives a good case study of the intricacy of data definitions.

First, notice the smoothness of the line of Covid-19 cases. This data series is naturally "smoothed" because it is an aggregate of country-level counts, which themselves are aggregates of regional counts.

By contrast, the line of traffic growth rates has not been smoothed. That's why we see sharp ups and downs. This series should be smoothed as well.

Junkcharts_ph_smoothedtrafficgrowth

The seven-day moving average line indicates a steady growth in traffic. The day-to-day fluctuations represent noise that distracts us from seeing the trendline.

Second, the Covid-19 series is a cumulative count, which means it's constantly heading upward over time (on rare days, it may go flat but never decrease). The traffic series represents change, is not cumulative, and so it can go up or down over time. To bring the data closer together, the Covid-19 series can be converted into new cases so they are change values.

Junkcharts_ph_smoothedcovidnewcases

Third, the traffic series are growth rates as percentages while the Covid-19 series are counts. It is possible to turn Covid-19 counts into growth rates as well. Like this:

Junkcharts_ph_smoothedcovidcasegrowth

By standardizing the units of measurement, both time series can be plotted on the same axis. Here is the new plot:

Redo_junkcharts_ph_trafficgrowthcasegrowth

Third, the two growth rates have different reference levels. The Covid-19 growth rate I computed is day-on-day growth. This is appropriate since we don't presume there is a seasonal effect - something like new cases on Mondays are typically larger than new cases on Tuesday doesn't seem plausible.

Thanks to this helpful explainer (link), I learned what the data analyst meant by a "normal day". The growth rate of traffic is not day-on-day change. It is the change in traffic relative to the average traffic in the last four weeks on the same day of week. If it's a Monday, the change in traffic is relative to the average traffic of the last four Mondays.

This type of seasonal adjustment is used if there is a strong day-of-week effect. For example, if the website reliably gets higher traffic during weekends than weekdays, then the Saturday traffic may always exceed the Friday traffic; instead of comparing Saturday to the day before, we index Saturday to the previous Saturday, Friday to the previous Friday, and then compare those two values.

***

Let's consider the last chart above, the one where I got rid of the dual axes.

A major problem with trying to establish correlation of two time series is time lag. Most charts like this makes a critical and unspoken assumption - that the effect of X on Y is immediate. This chart assumes that the higher the number Covid-19 cases, the more people stays home that day, the more people swarms the site that day. Said that way, you might see it's ridiculous.

What is true of any correlations in the wild - there is always some amount of time lag. It usually is hard to know how much lag.

***

Finally, the chart omitted a huge factor driving the growth in traffic. At various times dependent on the country, the website rolled out a free premium service offer. This is the primary reason for the spike around mid March. How much of the traffic growth is due to the popular marketing campaign, and how much is due to stay-at-home orders - that's the real question.


The epidemic of simple comparisons

Another day, another Twitter user sent a sloppy chart featured on TV news. This CNN graphic comes from Hugo K. by way of Kevin T.

And it's another opportunity to apply the self-sufficiency test.

Junkcharts_cnncovidcases_sufficiency_1

Like before, I removed the data printed on the graphic. In reading this chart, we like to know the number of U.S. reported cases of coronavirus relative to China, and Italy relative to the U.S.

So, our eyes trace these invisible lines:

Junkcharts_cnncovidcases_sufficiency_2

U.S. cases are roughly two-thirds of China while Italian cases are 90% of U.S.

That's what the visual elements, the columns, are telling us. But it's fake news. Here is the chart with the data:

Cnn_covidcases

The counts of reported cases in all three countries were neck and neck around this time.

What this quick exercise shows is that anyone who correctly reads this chart is reading the data off the chart, and ignoring the contradictionary message sent by the relative column heights. Thus, the visual elements are not self-sufficient in conveying the message.

***

In a Trifecta Checkup, I'd be most concerned about the D corner. The naive comparison of these case counts is an epidemic of its own. It sometimes leads to poor decisions that can exacerbate the public-health problems. See this post on my sister blog.

The difference in case counts between different countries (or regions or cities or locales) is not a direct measure of the difference in coronavirus spread in these places! This is because there are many often-unobserved factors that will explain most if not all of the differences.

After a lot of work by epidemiologists, medical researchers, statisticians and the likes, we now realize that different places conduct different numbers of tests. No test, no positive. The U.S. has been slow to get testing ramped up.

Less understood is the effect of testing selection. Consider the U.S. where it is still hard to get tested. Only those who meet a list of criteria are eligible. Imagine an alternative reality in which the U.S. conducted the same number of tests but instead of selecting most likely infected people to be tested, we test a random sample of people. The incidence of the virus in a random sample is much lower than in the severely infected, therefore, in this new reality, the number of positives would be lower despite equal numbers of tests.

That's for equal number of tests. If test kits are readily available, then a targeted (triage) testing strategy will under-count cases since mild cases or asymptomatic infections escape attention. (See my Wired column for problems with triage.)

To complicate things even more, in most countries, the number of tests and the testing selection have changed over time so a cumulative count statistic obscures those differences.

Beside testing, there are a host of other factors that affect reported case counts. These are less talked about now but eventually will be.

Different places have different population densities. A lot of cases in a big city and an equal number of cases in a small town do not signify equal severity.  Clearly, the situation in the latter is more serious.

Because the virus affects age groups differently, a direct comparison of the case counts without adjusting for age is also misleading. The number of deaths of 80-year-olds in a college town is low not because the chance of dying from COVID-19 is lower there than in a retirement community; it's low because 80-year-olds are a small proportion of the population.

Next, the cumulative counts ignore which stage of the "epi curve" these countries are at. The following chart can replace most of the charts you're inundated with by the media:

Epicurve_coronavirus

(I found the chart here.)

An epi curve traces the time line of a disease outbreak. Every location is expected to move through stages, with cases reaching a peak and eventually the number of newly recovered will exceed the number of newly infected.

Notice that China, Italy and the US occupy different stages of this curve.  It's proper to compare U.S. to China and Italy when they were at a similar early phase of their respective epi curve.

In addition, any cross-location comparison should account for how reliable the data sources are, and the different definitions of a "case" in different locations.

***

Finally, let's consider the Question posed by the graphic designer. It is the morbid question: which country is hit the worst by coronavirus?

This is a Type DV chart. It's got a reasonable question, but the data require a lot more work to adjust for the list of biases. The visual design is hampered by the common mistake of not starting columns at zero.

 


More visuals of the economic crisis

As we move into the next phase of the dataviz bonanza arising from the coronavirus pandemic, we will see a shift from simple descriptive graphics of infections and deaths to bivariate explanatory graphics claiming (usually spurious) correlations.

The FT is leading the way with this effort, and I hope all those who follow will make a note of several wise decisions they made.

  • They source their data. Most of the data about business activities come from private entities, many of which are data vendors who make money selling the data. In this article, FT got restaurant data from OpenTable, retail foot traffic data from Springboard, box office data from Box Office Mojo, flight data from Flightradar24, road traffic data from TomTom, and energy use data from European Network of Transmission System Operators for Electricity.
  • They generally let the data and charts speak without "story time". The text primarily describes the trends of the various data series.
  • They selected sectors that are obviously impacted by the shutdowns so any link between the observed trends and the crisis is plausible.

The FT charts are examples of clarity. Here is the one about road traffic patterns in major cities:

Ft_roadusage_corona_wrongsource

The cities are organized into regions: Europe, US, China, other Asia.

The key comparison is the last seven days versus the historical averages. The stories practically jump out of the page. Traffic in Paris collapsed on Tuesday. Wuhan is still locked down despite the falloff in infections. Drivers of Tokyo are probably wondering why teams are not going to the Olympics this year. Londoners? My guess is they're determined to not let another Brexit deadline slip.

***

I'd hope we go even further than FT when publishing this type of visual analytics involving "Big Data." These business data obtained from private sources typically have OCCAM properties: they are observational, seemingly complete, uncontrolled, adapted and merged. All these properties make the data very challenging to interpret.

The coronavirus case and death counts are simple by comparison. People are now aware of all the problems from differential rates of testing to which groups are selectively tested (i.e. triage) to how an infection or death is defined. The problems involving Big Data are much more complex.

I have three additional proposals:

Disclosure of Biases and Limitations

The private data have many more potential pitfalls. Take OpenTable data for example. The data measure restaurant bookings, not revenues. It measures gross bookings, not net bookings (i.e. removing no-shows). Only a proportion of restaurants use OpenTable (which cost owners money). OpenTable does not strike me as a quasi-monopoly so there are competitors with significant market share. The restaurants that use OpenTable do not form a random subsample of all restaurants. One of the most popular restaurants in the U.S. are pizza joints, with little of no seating, which do not feature in the bookings data. OpenTable also has differential popularity by country, region, or probably cuisine. 

I believe data journalists ought to provide such context in a footnote. Readers should have the information to judge whether they believe the data are sufficiently representative. Private data vendors who want data journalists to feature their datasets should be required to supply a footnote that describes the biases and limitations of their data.

Data journalists should think seriously about how they headline this type of chart. The standard practice is what FT adopted. The headline said "Restaurant bookings have collapsed" with a small footnote saying "Source: OpenTable". Should the headline have said "OpenTable bookings have collapsed" instead?

Disclosure of Definitions and Proxies

In the road traffic chart shown above, the metric is called "TomTom traffic congestion index". In order to earn this free advertising (euphemistically called "earned media" by industry), TomTom should be obliged to explain how this index is constructed. What does index = 100 mean?

[For example, it is curious that the Madrid index values are much lower across the board than those in Paris and Roma.]

For the electric usage chart, FT discloses the name of the data provider as a group of "43 electricity transmission system operators in 36 countries across Europe." Now, that is important context but can be better. The group may consist of 43 operators but how many of them are in the dataset? What proportion of the total electric usage do they account for in each country? If they have low penetration in a particular country, do they just report the low statistics or adjust the numbres?

If the journalist decides to use a proxy, for example, OpenTable restaurant bookings to reflect restaurant revenues, that should be explained, perhaps even justified.

Data as a Public Good

If private businesses choose to supply data to media outlets as a public service, they should allow the underlying data to be published.

Speaking from experience, I've seen a lot of bad data. It's one thing to hold your nose when the data are analyzed to make online advertising more profitable, or to find signals to profit from the stock market. It's another thing for the data analysis to drive public policy, in this case, policies that will have life-or-death implications.


It's impossible to understand Super Tuesday, this chart says

Twitter people are talking about this chart, from NPR (link):

Npr_delegates

This was published on Wednesday after Super Tuesday, the day on which multiple states held their primary elections. On the Democratic side, something like a third of the delegates were up for grabs (although as the data below this chart shows, a big chunk of the delegates, mostly from California and Texas, have yet to be assigned to a candidate as they were still counting votes.)

Here, I hovered over the Biden line, trying to decipher the secret code in these lines:

Npr_supertuesday_biden

I have to say I failed. Biden won 6 delegates on Feb 3, 9 on Feb 22, 39 on Feb 29, and 512 on Mar 3. I have no idea how those numbers led to this line!

***

Here is what happened so far in the Democratic primary:

Junkcharts_redo_nprsupertuesday_sm

The key tradeoff the designer has to make here is the relative importance of the timeline and the total count. In this chart, it's easiest to compare the total count across candidates as of the Wednesday morning, then to see how each candidate accumulates the delegates over the first five contest days. It takes a little more effort to see who's ahead after each contest day. And it is almost impossible to see the spacing of the contest days over the calendar.

I don't use stacked bar charts often but this chart form makes clear the cumulative counts over time so it's appropriate here.

Also, the as-yet-unassigned delegates is a big part of the story and needs to be visualized.

 

P.S. See comment below. There was a bug in the code and they fixed the line chart.

Npr_supertuesday_2

So, some of the undecided delegates have been awarded and comparing the two charts, it appears that the gap went down from 105 to 76. Still over 150 delegates not assigned.

 


Whither the youth vote

The youth turnout is something that politicians and pundits bring up constantly when talking about the current U.S. presidential primaries. So I decided to look for the data. I found some data at the United States Election Project, a site maintained by Dr. Michael McDonald. The key chart is this one:

Electproject_voterturnoutbyage

This is classic Excel.

***

Here is a quick fix:

Redo_electprojects_voterturnout

The key to the fix is to recognize the structure of the data.

The sawtooth pattern displayed in the original chart does not convey any real trends - it's an artifact that many people only turn out for presidential elections. (As a result, the turnout during presidential election years is driven by the general election turnout.)

The age groups have an order so instead of four different colors, use a progressive color scheme. This is one of the unspoken rules about color usage in data visualization, featured in my Long Read article.

***

What do I learn from this turnout by age group chart?

Younger voters are much more invested in presidential elections than off-year elections. The youth turnout for presidential elections is double that for other years.

Participation increased markedly in the 2018 mid-term elections across all four age groups, reflecting the passion for or against President Donald Trump. This was highly unusual - and in fact, the turnout for that off-year is closer to the turnout of a presidential year election. Whether the turnout will stay at this elevated level is a big question for 2022!

For presidential elections, turnout has been creeping up over time for all age groups. But the increase in 2016 (Hillary Clinton vs Donald Trump) was mild. The growth in participation is more noticable in the younger age groups, including in 2016.

Let's look at the relative jumps in 2018 (right side of the left chart). The younger the age group, the larger the jump. Turnout in the 18-29 group doubled to 32 percent. Turnout in the oldest age group increased by 20%, nothing to sneeze at but less impressive than in the younger age groups.

Why this is the case should be obvious. The 60+ age group has a ceiling. It's already at 60-70%; how much higher can it go? People at that age have many years to develop their preference for voting in elections. It would be hard to convince the holdouts (hideouts?) to vote.

The younger age groups are further from the ceiling. If you're an organizer, will you focus your energy on the 60% non-voting 18-29-years-old, or the 30% non-voting 60+ years-old? [This is the same question any business faces: do you win incremental sales from your more loyal customers, hoping they would spend even more, or your less loyal customers?]

For Democratic candidates, the loss in 2016 is hanging over them. Getting the same people to vote in 2020 as in 2016 is a losing hand. So, they need to expand the base somehow.

If you're a candidate like Joe Biden who relies on the 60+ year old bloc, it's hard to see where he can expand the base. Your advantage is that the core voter bloc is reliable. Your problem is that you don't have appeal to the younger age groups. So a viable path to winning in the general election has to involve flipping older Trump voters. The incremental ex-Trump voters have to offset the potential loss in turnout from younger voters.

If you're a candidate like Bernie Sanders who relies on the youth vote, you'd want to launch a get-out-the-vote effort aimed at younger voters. A viable path can be created by expanding the base through lifting the turnout rate of younger voters. The incremental young voters have to offset the fraction of the 60+ year old bloc who flip to Trump.

 

 

 

 

 

 


Conceptualizing a chart using Trifecta: a practical example

In response to the reader who left a comment asking for ideas for improving the "marginal abatements chart" that was discussed here, I thought it might be helpful to lay out the process I go through when conceptualizing a chart. (Just a reminder, here is the chart we're dealing with.)

Ar_submit_Fig-3-2-The-policy-cost-curve-525

First, I'm very concerned about the long program names. I see their proper placement in a horizontal orientation as a hard constraint on the design. I'd reject every design that displays the text vertically, at an angle, or hides it behind some hover effect, or abbreviates or abridges the text.

Second, I strongly suggest re-thinking the "cost-effectiveness" metric on the vertical axis. Flipping the sign of this metric makes a return-on-investment-type metric, which is much more intuitive. Just to reiterate a prior point, it feels odd to be selecting more negative projects before more positive projects.

Third, I'd like to decide what metrics to place on the two axes. There are three main possibilities: a) benefits (that is, the average annual emissions abatement shown on the horizontal axis currently), b) costs, and c) some function that ties together costs and benefits (currently, this design uses cost per unit benefit, and calls it cost effectivness but there are a variety of similar metrics that can be defined).

For each of these metrics, there is a secondary choice. I can use the by-project value or the cumulative value. The cumulative value is dependent on a selection order, in this case, determined by the criterion of selecting from the most cost-effective program to the least (regardless of project size or any other criteria).

This is where I'd bring in the Trifecta Checkup framework (see here for a guide).

Trifectacheckup_junkcharts_image
The decision of which metrics to use on the axes means I'm operating in the "D" corner. But this decision must be made with respect to the "Q" corner, thus the green arrow between the two. Which two metrics are the most relevant depends on what we want the chart to accomplish. That in turn depends on the audience and what specific question we are addressing for them.

Fourth, if the purpose of the chart is exploratory - that is to say, we use it to guide decision-makers in choosing a subset of programs, then I would want to introduce an element of interactivity. Imagine an interface that allows the user to move programs in and out of the chart, while the chart updates itself to compute the total costs and total benefits.

This last point ties together the entire Trifacta Checkup framework (link). The Question being exploratory in nature suggests a certain way of organizing and analyzing the Data as well as a Visual form that facilitates interacting with the information.

 

 


This chart tells you how rich is rich - if you can read it

Via twitter, John B. sent me the following YouGov chart (link) that he finds difficult to read:

Yougov_whoisrich

The title is clear enough: the higher your income, the higher you set the bar.

When one then moves from the title to the chart, one gets misdirected. The horizontal axis shows pound values, so the axis naturally maps to "the higher your income". But it doesn't. Those pound values are the "cutoff" values - the line between "rich" and "not rich". Even after one realizes this detail, the axis  presents further challenges: the cutoff values are arbitrary numbers such as "45,001" sterling; and these continuous numbers are treated as discrete categories, with irregular intervals between each category.

There is some very interesting and hard to obtain data sitting behind this chart but the visual form suppresses them. The best way to understand this dataset is to first think about each income group. Say, people who make between 20 to 30 thousand sterling a year. Roughly 10% of these people think "rich" starts at 25,000. Forty percent of this income group think "rich" start at 40,000.

For each income group, we have data on Z percent think "rich" starts at X. I put all of these data points into a heatmap, like this:

Redo_junkcharts_yougovuk_whoisrich

Technical note: in order to restore the horizontal axis to a continuous scale, you can take the discrete data from the original chart, then fit a smoothed curve through those points, and finally compute the interpolated values for any income level using the smoothing model.

***

There are some concerns about the survey design. It's hard to get enough samples for higher-income people. This is probably why the highest income segment starts at 50,000. But notice that 50,ooo is around the level at which lower-income people consider "rich". So, this survey is primarily about how low-income people perceive "rich" people.

The curve for the highest income group is much straighter and smoother than the other lines - that's because it's really the average of a number of curves (for each 10,000 sterling segment).

 

P.S. The YouGov tweet that publicized the small-multiples chart shown above links to a page that no longer contains the chart. They may have replaced it due to feedback.

 

 


Does this chart tell the sordid tale of TI's decline?

The Hustle has an interesting article on the demise of the TI calculator, which is popular in business circles. The article uses this bar chart:

Hustle_ti_calculator_chart

From a Trifecta Checkup perspective, this is a Type DV chart. (See this guide to the Trifecta Checkup.)

The chart addresses a nice question: is the TI graphing calculator a victim of new technologies?

The visual design is marred by the use of the calculator images. The images add nothing to our understanding and create potential for confusion. Here is a version without the images for comparison.

Redo_junkcharts_hustlet1calc

The gridlines are placed to reveal the steepness of the decline. The sales in 2019 will likely be half those of 2014.

What about the Data? This would have been straightforward if the revenues shown are sales of the TI calculator. But according to the subtitle, the data include a whole lot more than calculators - it's the "other revenues" category in the financial reports of Texas Instrument which markets the TI. 

It requires a leap of faith to believe this data. It is entirely possible that TI calculator sales increased while total "other revenues" decreased! The decline of TI calculator could be more drastic than shown here. We simply don't have enough data to say for sure.

 

P.S. [10/3/2019] Fixed TI.