Does this chart tell the sordid tale of TI's decline?

The Hustle has an interesting article on the demise of the TI calculator, which is popular in business circles. The article uses this bar chart:

Hustle_ti_calculator_chart

From a Trifecta Checkup perspective, this is a Type DV chart. (See this guide to the Trifecta Checkup.)

The chart addresses a nice question: is the TI graphing calculator a victim of new technologies?

The visual design is marred by the use of the calculator images. The images add nothing to our understanding and create potential for confusion. Here is a version without the images for comparison.

Redo_junkcharts_hustlet1calc

The gridlines are placed to reveal the steepness of the decline. The sales in 2019 will likely be half those of 2014.

What about the Data? This would have been straightforward if the revenues shown are sales of the TI calculator. But according to the subtitle, the data include a whole lot more than calculators - it's the "other revenues" category in the financial reports of Texas Instrument which markets the TI. 

It requires a leap of faith to believe this data. It is entirely possible that TI calculator sales increased while total "other revenues" decreased! The decline of TI calculator could be more drastic than shown here. We simply don't have enough data to say for sure.

 

P.S. [10/3/2019] Fixed TI.

 

 


Announcement: Advancing your data skills, Fall 2019

Interrupting the flow of dataviz with the following announcement.

If you're looking to shore up your data skills, modernize your skill set, or know someone looking for hands-on, high-touch instruction in Machine Learning, R, Cloud Computing, Data Quality, Digital Analytics,  A/B Testing and Financial Analysis, Principal Analytics Prep is offering evening classes this Fall. Click here to learn about our courses. 

Our instructors are industry veterans with 10+ years of practical industry experience. And class size is capped to 10, ensuring a high-touch learning environment.

Facebook_pap_parttimeimmersive_tree

 


Women workers taken for a loop or four

I was drawn to the following chart in Business Insider because of the calendar metaphor. (The accompanying article is here.)

Businessinsider_payday

Sometimes, the calendar helps readers grasp concepts faster but I'm afraid the usage here slows us down.

The underlying data consist of just four numbers: the wage gaps between race and gender in the U.S., considered simply from an aggregate median personal income perspective. The analyst adopts the median annual salary of a white male worker as a baseline. Then, s/he imputes the number of extra days that others must work to attain the same level of income. For example, the median Asian female worker must work 64 extra days (at her daily salary level) to match the white guy's annual pay. Meanwhile, Hispanic female workers must work 324 days extra.

There are a host of reasons why the calendar metaphor backfired.

Firstly, it draws attention to an uncomfortable detail of the analysis - which papers over the fact that weekends or public holidays are counted as workdays. The coloring of the boxes compounds this issue. (And the designer also got confused and slipped up when applying the purple color for Hispanic women.)

Secondly, the calendar focuses on Year 2 while Year 1 lurks in the background - white men have to work to get that income (roughly $46,000 in 2017 according to the Census Bureau).

Thirdly, the calendar view exposes another sore point around the underlying analysis. In reality, the white male workers are continuing to earn wages during Year 2.

The realism of the calendar clashes with the hypothetical nature of the analysis.

***

One can just use a bar chart, comparing the number of extra days needed. The calendar design can be considered a set of overlapping bars, wrapped around the shape of a calendar.

The staid bars do not bring to life the extra toil - the message is that these women have to work harder to get the same amount of pay. This led me to a different metaphor - the white men got to the destination in a straight line but the women must go around loops (extra days) before reaching the same endpoint.

Redo_businessinsider_racegenderpaygap

While the above is a rough sketch, I made sure that the total length of the lines including the loops roughly matches the total number of days the women needed to work to earn $46,000.

***

The above discussion focuses solely on the V(isual) corner of the Trifecta Checkup, but this data visualization is also interesting from the D(ata) perspective. Statisticians won't like such a simple analysis that ignores, among other things, the different mix of jobs and industries underlying these aggregate pay figures.

Now go to my other post on the sister (book) blog for a discussion of the underlying analysis.

 

 


What is a bad chart?

In the recent issue of Madolyn Smith’s Conversations with Data newsletter hosted by DataJournalism.com, she discusses “bad charts,” featuring submissions from several dataviz bloggers, including myself.

What is a “bad chart”? Based on this collection of curated "bad charts", it is not easy to nail down “bad-ness”. The common theme is the mismatch between the message intended by the designer and the message received by the reader, a classic error of communication. How such mismatch arises depends on the specific example. I am able to divide the “bad charts” into two groups: charts that are misinterpreted, and charts that are misleading.

 

Charts that are misinterpreted

The Causes of Death entry, submitted by Alberto Cairo, is a “well-designed” chart that requires “reading the story where it is inserted and the numerous caveats.” So readers may misinterpret the chart if they do not also partake the story at Our World in Data which runs over 1,500 words not including the appendix.

Ourworldindata_causesofdeath

The map of Canada, submitted by Highsoft, highlights in green the provinces where the majority of residents are members of the First Nations. The “bad” is that readers may incorrectly “infer that a sizable part of the Canadian population is First Nations.”

Highsoft_CanadaFirstNations

In these two examples, the graphic is considered adequate and yet the reader fails to glean the message intended by the designer.

 

Charts that are misleading

Two fellow bloggers, Cole Knaflic and Jon Schwabish, offer the advice to start bars at zero (here's my take on this rule). The “bad” is the distortion introduced when encoding the data into the visual elements.

The Color-blindness pictogram, submitted by Severino Ribecca, commits a similar faux pas. To compare the rates among men and women, the pictograms should use the same baseline.

Colourblindness_pictogram

In these examples, readers who correctly read the charts nonetheless leave with the wrong message. (We assume the designer does not intend to distort the data.) The readers misinterpret the data without misinterpreting the graphics.

 

Using the Trifecta Checkup

In the Trifecta Checkup framework, these problems are second-level problems, represented by the green arrows linking up the three corners. (Click here to learn more about using the Trifecta Checkup.)

Trifectacheckup_img

The visual design of the Causes of Death chart is not under question, and the intended message of the author is clearly articulated in the text. Our concern is that the reader must go outside the graphic to learn the full message. This suggests a problem related to the syncing between the visual design and the message (the QV edge).

By contrast, in the Color Blindness graphic, the data are not under question, nor is the use of pictograms. Our concern is how the data got turned into figurines. This suggests a problem related to the syncing between the data and the visual (the DV edge).

***

When you complain about a misleading chart, or a chart being misinterpreted, what do you really mean? Is it a visual design problem? a data problem? Or is it a syncing problem between two components?


Men and women faced different experiences in the labor market

Last week, I showed how the aggregate statistics, unemployment rate, masked some unusual trends in the labor market in the U.S. Despite the unemployment rate in 2018 being equal, and even a little below, that in 2000, the peak of the last tech boom, there are now significantly more people "not in the labor force," and these people are not counted in the unemployment rate statistic.

The analysis focuses on two factors that are not visible in the unemployment rate aggregate: the proportion of people considered not in labor force, and the proportion of employees who have part-time positions. The analysis itself masks a difference across genders.

It turns out that men and women had very different experiences in the labor market.

For men, things have looked progressively worse with each recession and recovery since 1990. After each recovery, more men exit the labor force, and more men become part-timers. The Great Recession, however, hit men even worse than previous recessions, as seen below:

Jc_unemployment_rate_explained_men

For women, it's a story of impressive gains in the 1990s, and a sad reversal since 2008.

Jc_unemployment_rate_explained_women

P.S. See here for Part 1 of this series. In particular, the color scheme is explained there. Also, the entire collection can be viewed here


Crazy rich Asians inspire some rich graphics

On the occasion of the hit movie Crazy Rich Asians, the New York Times did a very nice report on Asian immigration in the U.S.

The first two graphics will be of great interest to those who have attended my free dataviz seminar (coming to Lyon, France in October, by the way. Register here.), as it deals with a related issue.

The first chart shows an income gap widening between 1970 and 2016.

Nyt_crazyrichasians_incomegap1

This uses a two-lines design in a small-multiples setting. The distance between the two lines is labeled the "income gap". The clear story here is that the income gap is widening over time across the board, but especially rapidly among Asians, and then followed by whites.

The second graphic is a bumps chart (slopegraph) that compares the endpoints of 1970 and 2016, but using an "income ratio" metric, that is to say, the ratio of the 90th-percentile income to the 10th-percentile income.

Nyt_crazyrichasians_incomeratio2

Asians are still a key story on this chart, as income inequality has ballooned from 6.1 to 10.7. That is where the similarity ends.

Notice how whites now appears at the bottom of the list while blacks shows up as the second "worse" in terms of income inequality. Even though the underlying data are the same, what can be seen in the Bumps chart is hidden in the two-lines design!

In short, the reason is that the scale of the two-lines design is such that the small numbers are squashed. The bottom 10 percent did see an increase in income over time but because those increases pale in comparison to the large incomes, they do not show up.

What else do not show up in the two-lines design? Notice that in 1970, the income ratio for blacks was 9.1, way above other racial groups.

Kudos to the NYT team to realize that the two-lines design provides an incomplete, potentially misleading picture.

***

The third chart in the series is a marvellous scatter plot (with one small snafu, which I'd get t0).

Nyt_crazyrichasians_byethnicity

What are all the things one can learn from this chart?

  • There is, as expected, a strong correlation between having college degrees and earning higher salaries.
  • The Asian immigrant population is diverse, from the perspectives of both education attainment and median household income.
  • The largest source countries are China, India and the Philippines, followed by Korea and Vietnam.
  • The Indian immigrants are on average professionals with college degrees and high salaries, and form an outlier group among the subgroups.

Through careful design decisions, those points are clearly conveyed.

Here's the snafu. The designer forgot to say which year is being depicted. I suspect it is 2016.

Dating the data is very important here because of the following excerpt from the article:

Asian immigrants make up a less monolithic group than they once did. In 1970, Asian immigrants came mostly from East Asia, but South Asian immigrants are fueling the growth that makes Asian-Americans the fastest-expanding group in the country.

This means that a key driver of the rapid increase in income inequality among Asian-Americans is the shift in composition of the ethnicities. More and more South Asian (most of whom are Indians) arrivals push up the education attainment and household income of the average Asian-American. Not only are Indians becoming more numerous, but they are also richer.

An alternative design is to show two bubbles per ethnicity (one for 1970, one for 2016). To reduce clutter, the smaller ethnicites can be aggregated into Other or South Asian Other. This chart may help explain the driver behind the jump in income inequality.

 

 

 

 

 


Some Tufte basics brought to you by your favorite birds

Someone sent me this via Twitter, found on the Data is Beautiful reddit:

Reddit_whichbirdspreferwhichseeds_sm

The chart does not deliver on its promise: It's tough to know which birds like which seeds.

The original chart was also provided in the reddit:

Reddit_whichbirdswhichseeds_orig_sm

I can see why someone would want to remake this visualization.

Let's just apply some Tufte fixes to it, and see what happens.

Our starting point is this:

Slide1

First, consider the colors. Think for a second: order the colors of the cells by which ones stand out most. For me, the order is white > yellow > red > green.

That is a problem because for this data, you'd like green > yellow > red > white. (By the way, it's not explained what white means. I'm assuming it means the least preferred, so not preferred that one wouldn't consider that seed type relevant.)

Compare the above with this version that uses a one-dimensional sequential color scale:

Slide2

The white color still stands out more than necessary. Fix this using a gray color.

Slide3

What else is grabbing your attention when it shouldn't? It's those gridlines. Push them into the background using white-out.

Slide4

The gridlines are also too thick. Here's a slimmed-down look:

Slide5

The visual is much improved.

But one more thing. Let's re-order the columns (seeds). The most popular seeds are shown on the left, and the least on the right in this final revision.

Slide6

Look for your favorite bird. Then find out which are its most preferred seeds.

Here is an animated gif to see the transformation. (Depending on your browser, you may have to click on it to view it.)

Redojc_birdsseeds_all_2

 

PS. [7/23/18] Fixed the 5th and 6th images and also in the animated gif. The row labels were scrambled in the original version.

 


Is the chart answering your question? Excavating the excremental growth map

Economist_excrement_growthSan Franciscans are fed up with excremental growth. Understandably.

Here is how the Economist sees it - geographically speaking.

***

In the Trifecta Checkup analysis, one of the questions to ask is "What does the visual say?" and with respect to the question being asked.

The question is how much has the problem of human waste in SF grew from 2011 to 2017.

What does the visual say?

The number of complaints about human waste has increased from 2011 to 2014 to 2017.

The areas where there are complaints about human waste expanded.

The worst areas are around downtown, and that has not changed during this period of time.

***

Now, what does the visual not say?

Let's make a list:

  • How many complaints are there in total in any year?
  • How many complaints are there in each neighborhood in any year?
  • What's the growth rate in number of complaints, absolute or relative?
  • What proportion of complaints are found in the worst neighborhoods?
  • What proportion of the area is covered by the green dots on each map?
  • What's the growth in terms of proportion of areas covered by the green dots?
  • Does the density of green dots reflect density of human waste or density of human beings?
  • Does no green dot indicate no complaints or below the threshold of the color scale?

There's more:

  • Is the growth in complaints a result of more reporting or more human waste?
  • Is each complainant unique? Or do some people complain multiple times?
  • Does each piece of human waste lead to one and only one complaint? In other words, what is the relationship between the count of complaints and the count of human waste?
  • Is it easy to distinguish between human waste and animal waste?

And more:

  • Are all complaints about human waste valid? Does anyone verify complaints?
  • Are the plotted locations describing where the human waste is or where the complaint was made?
  • Can all complaints be treated identically as a count of one?
  • What is the per-capita rate of complaints?

In other words, the set of maps provides almost all no information about the excrement problem in San Francisco.

After you finish working, go back and ask what the visual is saying about the question you're trying to address!

 

As a reference, I found this map of the population density in San Francisco (link):

SFO_Population_Density

 


Two thousand five hundred ways to say the same thing

Wallethub published a credit card debt study, which includes the following map:

Wallethub_creditcardpaydownbyCity

Let's describe what's going on here.

The map plots cities (N = 2,562) in the U.S. Each city is represented by a bubble. The color of the bubble ranges from purple to green, encoding the percentile ranking based on the amount of credit card debt that was paid down by consumers. Purple represents 1st percentile, the lowest amount of paydown while green represents 99th percentile, the highest amount of paydown.

The bubble size is encoding exactly the same data, apparently in a coarser gradation. The more purple the color, the smaller the bubble. The more green the color, the larger the bubble.

***

The design decisions are baffling.

Purple is more noticeable than the green, but signifies the less important cities, with the lesser paydowns.

With over 2,500 bubbles crowding onto the map, over-plotting is inevitable. The purple bubbles are printed last, dominating the attention but those are the least important cities (1st percentile). The green bubbles, despite being larger, lie underneath the smaller, purple bubbles.

What might be the message of this chart? Our best guess is: the map explores the regional variation in the paydown rate of credit card debt.

The analyst provides all the data beneath the map. 

Wallethub_paydownbyCity_data

From this table, we learn that the ranking is not based on total amount of debt paydown, but the amount of paydown per household in each city (last column). That makes sense.

Shouldn't it be ranked by the paydown rate instead of the per-household number? Divide the "Total Credit Card Paydown by City" by "Total Credit Card Debt Q1 2018" should yield the paydown rate. Surprise! This formula yields a column entirely consisting of 4.16%.

What does this mean? They applied the national paydown rate of 4.16% to every one of 2,562 cities in the country. If they had plotted the paydown rate, every city would attain the same color. To create "variability," they plotted the per-household debt paydown amount. Said differently, the color scale encodes not credit card paydown as asserted but amount of credit card debt per household by city.

Here is a scatter plot of the credit card amount against the paydown amount.

Redo_creditcardpaydown_scatter

A perfect alignment!

This credit card debt paydown map is an example of a QDV chart, in which there isn't a clear question, there is almost no data, and the visual contains several flaws. (See our Trifecta checkup guide.) We are presented 2,562 ways of saying the same thing: 4.16%.

 

P.S. [6/22/2018] Added scatter plot, and cleaned up some language.

 

 

 


Playfulness in data visualization

The Newslab project takes aggregate data from Google's various services and finds imaginative ways to enliven the data. The Beautiful in English project makes a strong case for adding playfulness to your data visualization.

Newslab_language_wordsnakeThe data came from Google Translate. The authors look at 10 languages, and the top 10 words users ask to translate from those languages into English.

The first chart focuses on the most popular word for each language. The crawling snake presents the "worldwide" top words.

The crawling motion and the curvature are not required by the data but it inserts a dimension of playfulness into the data that engages the reader's attention.

The alternative of presenting a data table loses this virtue without gaining much in return.

Readers are asked to click on the top word in each country to reveal further statistics on the word.

For example, the word "good" leads to the following:

Newslab_language_top1_details

 

***

The second chart presents the top 10 words by language in a lollipop style:

Newslab_language_japanese10

The above diagram shows the top 10 Japanese words translated into English. This design sacrifices concise in order to achieve playful.

The standard format is a data table with one column for each country, and 10 words listed below each country header in order of decreasing frequency.

The creative lollipop display generates more extreme emotions - positive, or negative, depending on the reader. The data table is the safer choice, precisely because it does not engage the reader as deeply.