Three estimates, two differences trip up an otherwise good design

Reader Fernando P. was baffled by this chart from the Perception Gap report by More in Common. (link to report)

Moreincommon_perceptiongap_republicans

Overall, this chart is quite good. Its flaws are subtle. There is so much going on, perhaps even the designer found it hard to keep level.

The title is "Democrat's Perception Gap" which actually means the gap between Democrats' perception of Republicans and Republican's self-reported views. We are talking about two estimates of Republican views. Conversely, in Figure 2 (not shown), the "Republican's Perception Gap" describes two estimates of Democrat views.

The gap is visually shown as the gray bar between the red dot and the blue dot. This is labeled perception gap, and its values are printed on the right column, also labeled perception gap.

Perhaps as an after-thought, the designer added the yellow stripes, which is a third estimate of Republican views, this time by Independents. This little addition wreaks havoc. There are now three estimates - and two gaps. There is a new gap, between Independents' perception of Republican views, and Republican's self-reported views. This I-gap is hidden in plain sight. The words "perception gap" obstinately sticks to the D-gap.

***

Here is a slightly modified version of the same chart.

Redo_perceptiongap_republicans

 

The design focuses attention on the two gaps (bars). It also identifies the Republican self-perception as the anchor point from which the gaps are computed.

I have chosen to describe the Republican dot as "self-perception" rather than "actual view," which connotes a form of "truth." Rather than considering the gap as an error of estimation, I like to think of the gap as the difference between two groups of people asked to estimate a common quantity.

Also, one should note that on the last two issues, there is virtual agreement.

***

Aside from the visual, I have doubts about the value of such a study. Only the most divisive issues are being addressed here. Adding a few bipartisan issues would provide controls that can be useful to tease out what is the baseline perception gap.

I wonder whether there is a self-selection in survey response, such that people with extreme views (from each party) will be under-represented. Further, do we believe that all survey respondents will provide truthful answers to sensitive questions that deal with racism, sexism, etc.? For example, if I am a moderate holding racist views, would I really admit to racism in a survey?

 

 


The Periodic Table, a challenge in information organization

Reader Chris P. points me to this article about the design of the Periodic Table. I then learned that 2019 is the “International Year of the Periodic Table,” according to the United Nations.

Here is the canonical design of the Periodic Table that science students are familiar with.

Wiki-Simple_Periodic_Table_Chart-en.svg

(Source: Wikipedia.)

The Periodic Table is an exercise of information organization and display. It's about adding structure to over 100 elements, so as to enhance comprehension and lookup. The canonical tabular design has columns and rows. The columns (Groups) impose a primary classification; the rows (Periods) provide a secondary classification. The elements also follow an aggregate order, which is traced by reading from top left to bottom right. The row structure makes clear the "periodicity" of the elements: the "period" of recurrence is not constant, tending to increase with the heavier elements at the bottom.

As with most complex datasets, these elements defy simple organization, due to a curse of dimensionality. The general goal is to put the similar elements closer together. Similarity can be defined in an infinite number of ways, such as chemical, physical or statistical properties. The canonical design, usually attributed to Russian chemist Mendeleev, attained its status because the community accepted his organizing principles, that is, his definitions of similarity (subsequently modified).

***

Of interest, there is a list of unsettled issues. According to Wikipedia, the most common arguments concern:

  • Hydrogen: typically shown as a member of Group 1 (first column), some argue that it doesn’t belong there since it is a gas not a metal. It is sometimes placed in Group 17 (halogens), where it forms a nice “triad” with fluorine and chlorine. Other designers just float hydrogen up top.
  • Helium: typically shown as a member of Group 18 (rightmost column), the  halogens noble gases, it may also be placed in Group 2.
  • Mercury: usually found in Group 12, some argue that it is not a metal like cadmium and zinc.
  • Group 3: other than the first two elements , there are various voices about how to place the other elements in Group 3. In particular, the pairs of lanthanum / actinium and lutetium / lawrencium are sometimes shown in the main table, sometimes shown in the ‘f-orbital’ sub-table usually placed below the main table.

***

Over the years, there have been numerous attempts to re-design the Periodic table. Some of these are featured in the article that Chris sent me (link).

I checked how these alternative designs deal with those unsettled issues. The short answer is they don't settle the issues.

Wide Table (Janet)

The key change is to remove the separation between the main table and the f-orbital (pink) section shown below, as a "footnote". This change clarifies the periodicity of the elements, especially the elongating periods as one moves down the table. This form is also called "long step".

Mg32190402_long_conventional

As a tradeoff, this table requires more space and has an awkward aspect ratio.

In this version of the wide table, the designer chooses to stack lutetium / lawrencium in Group 3 as part of the main table. Other versions place lanthanum / actinium in Group 3 as part of the main table. There are even versions that leave Group 3 with two elements.

Hydrogen, helium and mercury retain their conventional positions.

 

Spiral Design (Hyde)

There are many attempts at spiral designs. Here is one I found on this tumblr:

Hyde_periodictable

The spiral leverages the correspondence between periodic and circular. It is visually more pleasing than a tabular arrangement. But there is a tradeoff. Because of the increasing "diameter" from inner to outer rings, the inner elements are visually constrained compared to the outer ones.

In these spiral diagrams, the designer solves the aspect-ratio problem by creating local loops, sometimes called peninsulas. This is analogous to the footnote table solution, and visually distorts the longer periodicity of the heavier elements.

For Hyde's diagram, hydrogen is floated, helium is assigned to Group 2, and mercury stays in Group 12.

 

Racetrack

I also found this design on the same tumblr, but unattributed. It may have come from Life magazine.

Tumblr_n3tbz5rIKk1s3r80lo3_1280

It's a variant of the spiral. Instead of peninsulas, the designer squeezes the f-orbital section under Group 3, so this is analogous to the wide table solution.

The circular diagrams convey the sense of periodic return but the wide table displays the magnitudes more clearly.

This designer places hydrogen in group 18 forming a triad with fluorine and chlorine. Helium is in Group 17 and mercury in the usual Group 12 .

 

Cartogram (Sheehan)

This version is different.

Elements_relative_abundance

The designer chooses a statistical property (abundance) as the primary organizing principle. The key insight is that the lighter elements in the top few rows are generally more abundant - thus more important in a sense. The cartogram reveals a key weakness of the spiral diagrams that draw the reader's attention to the outer (heavier) elements.

Because of the distorted shapes, the cartogram form obscures much of the other data. In terms of the unsettled issues, hydrogen and helium are placed in Groups 1 and 2. Mercury is in Group 12. Group 3 is squeezed inside the main table rather than shown below.

 

Network

The centerpiece of the article Chris sent me is a network graph.

Periodic-bonds_1024

This is a complete redesign, de-emphasizing the periodicity. It's a result of radically changing the definition of similarity between elements. One barrier when introducing entirely new displays is the tendency of readers to expect the familiar.

***

I found the following articles useful when researching this post:

The Conversation

Royal Chemistry Society

 


Wayward legend takes sides in a chart of two sides, plus data woes

Reader Chris P. submitted the following graph, found on Axios:

Axios_newstopics

From a Trifecta Checkup perspective, the chart has a clear question: are consumers getting what they wanted to read in the news they are reading?

Nevertheless, the chart is a visual mess, and the underlying data analytics fail to convince. So, it’s a Type DV chart. (See this overview of the Trifecta Checkup for the taxonomy.)

***

The designer did something tricky with the axis but the trick went off the rails. The underlying data consist of two set of ranks, one for news people consumed and the other for news people wanted covered. With 14 topics included in the study, the two data series contain the same values, 1 to 14. The trick is to collapse both axes onto one. The trouble is that the same value occurs twice, and the reader must differentiate the plot symbols (triangle or circle) to figure out which is which.

It does not help that the lines look like arrows suggesting movement. Without first reading the text, readers may assume that topics change in rank between two periods of time. Some topics moved right, increasing in importance while others shifted left.

The design wisely separated the 14 topics into three logical groups. The blue group comprises news topics for which “want covered” ranking exceeds the “read” ranking. The orange group has the opposite disposition such that the data for “read” sit to the right side of the data for “want covered”. Unfortunately, the legend up top does more harm than good: it literally takes sides!

**

Here, I've put the data onto a scatter plot:

Redo_junkcharts_aiosnewstopics_1

The two sets of ranks are basically uncorrelated, as the regression line is almost flat, with “R-squared” of 0.02.

The analyst tried to "rescue" the data in the following way. Draw the 45-degree line, and color the points above the diagonal blue, and those below the diagonal orange. Color the points on the line gray. Then, write stories about those three subgroups.

Redo_junkcharts_aiosnewstopics_2

Further, the ranking of what was read came from Parse.ly, which appears to be surveillance data (“traffic analytics”) while the ranking of what people want covered came from an Axios/SurveyMonkey poll. As for as I could tell, there was no attempt to establish that the two populations are compatible and comparable.

 

 

 

 

 


Trump resistance chart: cleaning up order, importance, weight, paneling

Morningconsult_gopresistance_trVox featured the following chart when discussing the rise of resistance to President Trump within the GOP.

The chart is composed of mirrored bar charts. On the left side, with thicker pink bars that draw more attention, the design depicts the share of a particular GOP demographic segment that said they'd likely vote for a Trump challenger, according to a Morning Consult poll.

This is the primary metric of interest, and the entire chart is ordered by descending values from African Americans who are most likely (67%) to turn to a challenger to those who strongly support Trump and are the least likely (17%) to turn to someone else.

The right side shows the importance of each demographic, measured by the share of GOP. The relationship between importance and likelihood to defect from Trump is by and large negative but that fact takes a bit of effort to extract from this mirrored bar chart arrangement.

The subgroups are not complete. For example, the only ethnicity featured is African Americans. Age groups are somewhat more complete with under 18 being the only missing category.

The design makes it easy to pick off the most disaffected demographic segments (and the least, from the bottom) but these are disparate segments, possibly overlapping.

***

One challenge of this data is differentiating the two series of proportions. In this design, they use visual cues, like the height and width of the bars, colors, stacked vs not, data labels. Visual variety comes to the rescue.

Also note that the designer compensated for the lack of stacking on the left chart by printing data labels.

***

When reading this chart, I'm well aware that segments like urban residents, income more than $100K, at least college educated are overlapping, and it's hard to interpret the data the way it's been presented.

I wanted to place the different demographics into their natural groups, such as age, income, urbanicity, etc. Such a structure also surfaces demographic patterns, e.g. men are slightly more disaffected than women (not significant), people earning $100K+ are more unhappy than those earning $50K-.

Further, I'd like to make it easier to understand the importance factor - the share of GOP. Because the original form orders the demographics according to the left side, the proportions on the right side are jumbled.

Here is a draft of what I have in mind:

Redo_voxGOPresistance

The widths of the line segments show the importance of each demographic segment. The longest line segments are toward the bottom of the chart (< 40% likely to vote for Trump challenger).

 


NYT hits the trifecta with this market correction chart

Yesterday, in the front page of the Business section, the New York Times published a pair of charts that perfectly captures the story of the ongoing turbulence in the stock market.

Here is the first chart:

Nyt_marketcorrection_1

Most market observers are very concerned about the S&P entering "correction" territory, which the industry arbitrarily defines as a drop of 10% or more from a peak. This corresponds to the shortest line on the above chart.

The chart promotes a longer-term reflection on the recent turbulence, using two reference points: the index has returned to the level even with that at the start of 2018, and about 16 percent higher since the beginning of 2017.

This is all done tastefully in a clear, understandable graphic.

Then, in a bit of a rhetorical flourish, the bottom of the page makes another point:

Myt_marketcorrection2

When viewed back to a 10-year period, this chart shows that the S&P has exploded by 300% since 2009.

A connection is made between the two charts via the color of the lines, plus the simple, effective annotation "Chart above".

The second chart adds even more context, through vertical bands indicating previous corrections (drops of at least 10%). These moments are connected to the first graphic via the beige color. The extra material conveys the message that the market has survived multiple corrections during this long bull period.

Together, the pair of charts addresses a pressing current issue, and presents a direct, insightful answer in a simple, effective visual design, so it hits the Trifecta!

***

There are a couple of interesting challenges related to connecting plots within a multiple-plot framework.

While the beige color connects the concept of "market correction" in the top and bottom charts, it can also be a source of confusion. The orientation and the visual interpretation of those bands differ. The first chart uses one horizontal band while the chart below shows multiple vertical bands. In the first chart, the horizontal band refers to a definition of correction while in the second chart, the vertical bands indicate experienced corrections.

Is there a solution in which the bands have the same orientation and same meaning?

***

These graphs solve a visual problem concerning the visualization of growth over time. Growth rates are anchored to some starting time. A ten-percent reduction means nothing unless you are told ten-percent of what.

Using different starting times as reference points, one gets different values of growth rates. With highly variable series of data like stock prices, picking starting times even a day apart can lead to vastly different growth rates.

The designer here picked several obvious reference times, and superimposes multiple lines on the same plotting canvass. Instead of having four lines on one chart, we have three lines on one, and four lines on the other. This limits the number of messages per chart, which speeds up cognition.

The first chart depicts this visual challenge well. Look at the start of 2018. This second line appears as if you can just reset the start point to 0, and drag the remaining portion of the line down. The part of the top line (to the right of Jan 2018) looks just like the second line that starts at Jan 2018.

Jc_marketcorrection1

However, a closer look reveals that the shape may be the same but the magnitude isn't. There is a subtle re-scaling in addition to the re-set to zero.

The same thing happens at the starting moment of the third line. You can't just drag the portion of the first or second line down - there is also a needed re-scaling.


The French takes back cinema but can you see it?

I like independent cinema, and here are three French films that come to mind as I write this post: Delicatessen, The Class (Entre les murs), and 8 Women (8 femmes). 

The French people are taking back cinema. Even though they purchased more tickets to U.S. movies than French movies, the gap has been narrowing in the last two decades. How do I know? It's the subject of this infographic

DataCinema

How do I know? That's not easy to say, given how complicated this infographic is. Here is a zoomed-in view of the top of the chart:

Datacinema_top

 

You've got the slice of orange, which doubles as the imagery of a film roll. The chart uses five legend items to explain the two layers of data. The solid donut chart presents the mix of ticket sales by country of origin, comparing U.S. movies, French movies, and "others". Then, there are two thin arcs showing the mix of movies by country of origin. 

The donut chart has an usual feature. Typically, the data are coded in the angles at the donut's center. Here, the data are coded twice: once at the center, and again in the width of the ring. This is a self-defeating feature because it draws even more attention to the area of the donut slices except that the areas are highly distorted. If the ratios of the areas are accurate when all three pieces have the same width, then varying those widths causes the ratios to shift from the correct ones!

The best thing about this chart is found in the little blue star, which adds context to the statistics. The 61% number is unusually high, which demands an explanation. The designer tells us it's due to the popularity of The Lion King.

***

The one donut is for the year 1994. The infographic actually shows an entire time series from 1994 to 2014.

The design is most unusual. The years 1994, 1999, 2004, 2009, 2014 receive special attention. The in-between years are split into two pairs, shrunk, and placed alternately to the right and left of the highlighted years. So your eyes are asked to zig-zag down the page in order to understand the trend. 

To see the change of U.S. movie ticket sales over time, you have to estimate the sizes of the red-orange donut slices from one pie chart to another. 

Here is an alternative visual design that brings out the two messages in this data: that French movie-goers are increasingly preferring French movies, and that U.S. movies no longer account for the majority of ticket sales.

Redo_junkcharts_frenchmovies

A long-term linear trend exists for both U.S. and French ticket sales. The "outlier" values are highlighted and explained by the blockbuster that drove them.

 

P.S.

1. You can register for the free seminar in Lyon here. To register for live streaming, go here.
2. Thanks Carla Paquet at JMP for help translating from French.


Steel tariffs, and my new dataviz seminar

I am developing a new seminar aimed at business professionals who want to improve their ability to communicate using charts. I want any guidance to be tool-agnostic, so that attendees can implement them using Excel if that’s their main charting software. Over the 12+ years that I’ve been blogging, certain ideas keep popping up; and I have collected these motifs and organized them for the seminar. This post is about a recent chart that brings up a few of these motifs.

This chart has been making the rounds in articles about the steel tariffs.

2018.03.08steel_1

The chart shows the Top 10 nations that sell steel to the U.S., which together account for 78% of all imports. 

The chart shows a few signs of design. These things caught my eye:

  1. the pie chart on the left delivers the top-line message that 10 countries account for almost 80% of all U.S. steel imports
  2. the callout gives further information about which 10 countries and how much each nation sells to the U.S. This is a nice use of layering
  3. on the right side, progressive tints of blue indicate the respective volumes of imports

On the negative side of the ledger, the chart is marred by three small problems. Each of these problems concerns inconsistency, which creates confusion for readers.

  1. Inconsistent use of color: on the left side, the darker blue indicates lower volume while on the right side, the darker blue indicates higher volume
  2. Inconsistent coding of pie slices: on the right side, the percentages add up to 78% while the total area of the pie is 100%
  3. Inconsistent scales: the left chart carrying the top-line message is notably smaller than the right chart depicting the secondary message. Readers’ first impression is drawn to the right chart.

Easy fixes lead to the following chart:

Redo_steelimports_1

***

The central idea of the new dataviz seminar is that there are many easy fixes that are often missed by the vast majority of people making Excel charts. I will present a stack of these motifs. If you're in the St. Louis area, you get to experience the seminar first. Register for a spot here.

Send this message to your friends and coworkers in the area. Also, contact me if you'd like to bring this seminar to your area.

***

I also tried the following design, which brings out some other interesting tidbits, such as that Canada and Brazil together sell the U.S. about 30% of its imported steel, the top 4 importers account for about 50% of all steel imports, etc. Color is introduced on the chart via a stylized flag coloring.

Redo_steelimports_2

 

 

 

 

 


A gem among the snowpack of Olympics data journalism

It's not often I come across a piece of data journalism that pleases me so much. Here it is, the "Happy 700" article by Washington Post is amazing.

Wpost_happy700_map2

 

When data journalism and dataviz are done right, the designers have made good decisions. Here are some of the key elements that make this article work:

(1) Unique

The topic is timely but timeliness heightens both the demand and supply of articles, which means only the unique and relevant pieces get the readers' attention.

(2) Fun

The tone is light-hearted. It's a fun read. A little bit informative - when they describe the towns that few have heard of. The notion is slightly silly but the reader won't care.

(3) Data

It's always a challenge to make data come alive, and these authors succeeded. Most of the data work involves finding, collecting and processing the data. There isn't any sophisticated analysis. But a powerful demonstration that complex analysis is not always necessary.

(4) Organization

The structure of the data is three criteria (elevation, population, and terrain) by cities. A typical way of showing such data might be an annotated table, or a Bumps-type chart, grouped columns, and so on. All these formats try to stuff the entire dataset onto one chart. The designers chose to highlight one variable at a time, cumulatively, on three separate maps. This presentation fits perfectly with the flow of the writing. 

(5) Details

The execution involves some smart choices. I am a big fan of legend/axis labels that are informative, for example, note that the legend doesn't say "Elevation in Meters":

Wpost_happy700_legend

The color scheme across all three maps shows a keen awareness of background/foreground concerns. 


Two nice examples of interactivity

Janie on Twitter pointed me to this South China Morning Post graphic showing off the mighty train line just launched between north China and London (!)

Scmp_chinalondonrail

Scrolling down the page simulates the train ride from origin to destination. Pictures of key regions are shown on the left column, as well as some statistics and other related information.

The interactivity has a clear purpose: facilitating cross-reference between two chart forms.

The graphic contains a little oversight ... The label for the key city of Xian, referenced on the map, is missing from the elevation chart on the left here:

Scmp_chinalondonrail_xian

 ***

I also like the way New York Times handled interactivity to this chart showing the rise in global surface temperature since the 1900s. The accompanying article is here.

Nyt_surfacetemp

When the graph is loaded, the dots get printed from left to right. That's an attention grabber.

Further, when the dots settle, some years sink into the background, leaving the orange dots that show the years without the El Nino effect. The reader can use the toggle under the chart title to view all of the years.

This configuration is unusual. It's more common to show all the data, and allow readers to toggle between subsets of the data. By inverting this convention, it's likely few readers need to hit that toggle. The key message of the story concerns the years without El Nino, and that's where the graphic stands.

This is interactivity that succeeds by not getting in the way. 

 

 

 


Let's not mix these polarized voters as the medians run away from one another

Long-time follower Daniel L. sent in a gem, by the Washington Post. This is a multi-part story about the polarization of American voters, nicely laid out, with superior analyses and some interesting graphics. Click here to see the entire article.

Today's post focuses on the first graphic. This one:

Wpost_friendsparties1

The key messages are written out on the 2017 charts: namely, 95% of Republicans are more conservative than the median Democrat, and 97% of Democrats are more libearl than the median Republicans.

This is a nice statistical way of laying out the polarization. There are a number of additional insights one can draw from the population distributions: for example, in the bottom row, the Democrats have been moving left consistently, and decisively in 2017. By contrast, Republicans moved decisively to the right from 2004 to 2017. I recall reading about polarization in past elections but it is really shocking to see the extreme in 2017.

A really astounding but hidden feature is that the median Democrat and the median Republican were not too far apart in 1994 and 2004 but the gap exploded in 2017.

***

I like to solve a few minor problems on this graphic. It's a bit confusing to have each chart display information on both Republican and Democratic distributions. The reader has to understand that in the top row, the red area represents Republican voters but the blue line shows the median Democrat.

Also, I want to surface two key insights: the huge divide that developed in 2017, and the exploding gap between the two medians.

Here is the revised graphic:

  Redo_wpost_friendsparties1

On the left side, each chart focuses on one party, and the trend over the three elections. The reader can cross charts to discover that the median voter in one party is more extreme than essentially all of the voters of the other party. This same conclusion can be drawn from the exploding gap between the median voters in either party, which is explicitly plotted in the lower right chart. The top right chart is a pretty visualization of how polarized the country was in the 2017 election.