This holiday retailers hope it will snow dollars

According to the Conference Board, the pandemic will not deter U.S. consumers from emptying their wallets this holiday season. Here's a chart that shows their expectation (link):



A few little things make this chart work:

The "More" category is placed on the left, as English-speaking countries tend to be read Left-to-Right, and it is also given the deepest green, drawing our attention.

Only the "More" segments have data labels. I'd have omitted the decimals. I suspect they are added because financial analysts may be multiplying these percentages to yield dollar amounts, in which case the extra precision helps.

The categories are ordered by the decreasing propensity of increased spending this year relative to last year. (The business community has an optimism bias.)

The choice of three shades of one color instead of three different colors keeps the chart clean.


The use of snowflakes surely infuriates a hardcore Tufte fan although I like that they add a festive note to the presentation. The large snowflake isn't randomly positioned but placed exactly where it causes the least interference with the bar chart.


Locating the political center

I mentioned the September special edition of Bloomberg Businessweek on the election in this prior post. Today, I'm featuring another data visualization from the magazine.



Here are the rightmost two charts.

Bloomberg_politicalcenter_rightside Time runs from top to bottom, spanning four decades.

Each chart covers a political issue. These two charts concern abortion and marijuana.

The marijuana question (far right) has only two answers, legalize or don't legalize. The underlying data measure the proportions of people agreeing to each point of view. Roughly three-quarters of the population disagreed with legalization in 1980 while two-thirds agree with it in 2020.

Notice that there are no horizontal axis labels. This is a great editorial decision. Only coarse trends are of interest here. It's not hard to figure out the relative proportions. Adding labels would just clutter up the display.

By contrast, the abortion question has three answer choices. The middle option is "Sometimes," which is represented by a white color, with a dot pattern. This is an issue on which public opinion in aggregate has barely shifted over time.

The charts are organized in a small-multiples format. It's likely that readers are consuming each chart individually.


What about the dashed line that splits each chart in half? Why is it there?

The vertical line assists our perception of the proportions. Think of it as a single gridline.

In fact, this line is underplayed. The headline of the article is "tracking the political center." Where is the center?

Until now, we've paid attention to the boundaries between the differently colored areas. But those boundaries do not locate the political center!

The vertical dashed line is the political center; it represents the view of the median American. In 1980, the line sat inside the gray section, meaning the median American opposed legalizing marijuana. But the prevalent view was losing support over time and by 2010, there wer more Americans wanting to legalize marijuana than not. This is when the vertical line crossed into the green zone.

The following charts draw attention to the middle line, instead of the color boundaries:

Junkcharts_redo_bloombergpoliticalcenterrightsideOn these charts, as you glance down the middle line, you can see that for abortion, the political center has never exited the middle category while for marijuana, the median American didn't want to legalize it until an inflection point was reached around 2010.

I highlight these inflection points with yellow dots.


The effect on readers is entirely changed. The original charts draw attention to the areas first while the new charts pull your eyes to the vertical line.


Bloomberg made me digest these graphics slowly

Ask the experts to name the success metric of good data visualization, and you will receive a dozen answers. The field doesn't have an all-encompassing metric. A useful reference is Andrew Gelman and Antony Urwin (2012) in which they discussed the tradeoff between beautiful and informative, which derives from the familiar tension between art and science.

For a while now, I've been intrigued by metrics that measure "effort". Some years ago, I described the concept of a "return on effort" in this post. Such a metric can be constructed like the dominating financial metric of return on investment. The investment here is an investment of time, of attention. I strongly believe that if the consumer judges a data visualization to be compelling, engaging or  ell constructed, s/he will expend energy to devour it.

Imagine grub you discard after the first bite, compared to the delicious food experienced slowly, savoring every last bit.

Bloomberg_ambridge_smI'm writing this post while enjoying the September issue of Bloomberg Businessweek, which focuses on the upcoming U.S. Presidential election. There are various graphics infused into the pages of the magazine. Many of these graphics operate at a level of complexity above what typically show up in magazines, and yet I spent energy learning to understand them. This response, I believe, is what visual designers should aim for.


Today, I discuss one example of these graphics, shown on the right. You might be shocked by the throwback style of these graphics. They look like they arrived from decades ago!

Grayscale, simple forms, typewriter font, all caps. Have I gone crazy?

The article argues that a town like Ambridge in Beaver County, Pennslyvania may be pivotal in the November election. The set of graphics provides relevant data to understand this argument.

It's evidence that data visualization does not need whiz-bang modern wizardry to excel.

Let me focus on the boxy charts from the top of the column. These:


These charts solve a headache with voting margin data in the U.S.  We have two dominant political parties so in any given election, the vote share data split into three buckets: Democratic, Republican, and a catch-all category that includes third parties, write-ins, and none of the above. The third category rarely exceeds 5 percent.  A generic pie chart representation looks like this:


Stacked bars have this look:


In using my Trifecta framework (link), the top point is articulating the question. The primary issue here is the voting margin between the winner and the second-runner-up, which is the loser in what is typically a two-horse race. There exist two sub-questions: the vote-share difference between the top two finishers, and the share of vote effectively removed from the pot by the remaining candidates.

Now, take another look at the unusual chart form used by Bloomberg:


The catch-all vote share sits at the bottom while the two major parties split up the top section. This design demonstrates a keen understanding of the context. Consider the typical outcome, in which the top two finishers are from the two major parties. When answering the first sub-question, we can choose the raw vote shares, or the normalized vote shares. Normalizing shifts the base from all candidates to the top two candidates.

The Bloomberg chart addresses both scales. The normalized vote shares can be read directly by focusing only on the top section. In an even two-horse race, the top section is split by half - this holds true regardless of the size of the bottom section.

This is a simple chart that packs a punch.


Making better pie charts if you must

I saw this chart on an NYU marketing twitter account:


The graphical design is not easy on our eyes. It's just hard to read for various reasons.

The headline sounds like a subject line from an email.

The subheaders are long, and differ only by a single word.

Even if one prefers pie charts, they can be improved by following a few guidelines.

First, start the first sector at the 12-oclock direction. Like this:


The survey uses a 5-point scale from "Very Good" to "Very Bad". Instead of using five different colors, it's better to use two extreme colors and shading. Like this:


I also try hard to keep all text horizontal.


For those who prefers not to use pie charts, a side-by-side bar chart works well.


In my article for, I outlined "unspoken rules" for making various charts, including pie charts.




Election visuals 4: the snake pit is the best election graphic ever

This is the final post on the series of data visualization deployed by FiveThirtyEight to explain their election forecasting model. The previous posts are here, here and here.

I'm saving the best for last.


This snake-pit chart brings me great joy - I wish I came up with it!

This chart wins by focusing on a limited set of questions, and doing so excellently. As with many election observers, we understand that the U.S. presidential election will turn on so-called "swing states," and the candidates' strength in these swing states are variable, as the name suggests. Thus, we like to know which states are in play, and within these states, which ones are most unpredictable.

This chart lines up all the states from the reddest of red up top to the bluest of blue at the bottom. Each state is ranked by the voting margin predicted by 538's election forecasting model. The swing states are found in the middle.

Since each state confers a fixed number of electoral votes, and a candidate must amass 270 to win, there is a "tipping" state. In the diagram above, it's Pennsylvania. This pivotal state is neatly foregrounded as the one crossing the line in the middle.

The lengths of the segments correspond to the number of electoral votes and so do not change with the data. What change are the sequencing of the segments, and the color shading.

This data visualization is a gem of visual story-telling. The form lends itself to a story.


The snake-pit chart succeeds by not doing too much. There are many items that the chart does not directly communicate.

The exact number of electoral votes by state is not explicit, nor is it easy to compare the lengths of bending segments. The color scale for conveying the predicted voting margins is crude, and it's not clear what is the difference between a deep color and a light color. It's also challenging to learn the electoral vote split; the actual winning margin is not even stated.

The reality is the average reader doesn't care. I got everything I wanted from the chart, and I ain't got the time to explore every state.

There is a hover-over effect that reveals some of the additional information:


One can keep going on. I have no idea how the 40,000 scenarios presented in the other graphics in this series have been reduced to the forecast shown in the inset. But again, those omissions did not lessen my enjoyment. The point is: let your graphics breathe.


I'm thinking of potential variations even though I'm fully satisfied with this effort.

I wonder if the color shading should be reversed. The light shading encodes a smaller voting margin, which indicates a tighter race. But our attention is typically drawn first to the darker shades. If the shading scheme is reversed, the color should be described as how tight the race is.

I also wonder if a third color (purple) should be introduced. Doing so would require the editors to make judgment calls on which set of states are swing states.

One strange thing about election day is the specific sequence of when TV stations (!) call the state results, which not only correlates with voting margin but also with time zones. I wonder if the time zone information can be worked into the sequencing of segments.

Let me know what you think of these ideas, or leave your own ideas, in the comments below.


I have already praised this graphic when it first came out in 2016. (link)

A key improvement is tilting the chart, which avoids vertical state labels.

The previous post was written around election day 2016. The snake pit further cements its status as a story-telling device. As states are called, they are taken out of the picture. So it works very well as a dynamic chart on election day.

I'm nominating this snake-pit chart as the best election graphic ever. Kudos to the FiveThirtyEight team.

Why you should expunge the defaults from Excel or (insert your favorite graphing program)

Yesterday, I posted the following chart in the post about Cornell's Covid-19 case rate after re-opening for in-person instruction.


This is an edited version of the chart used in Peter Frazier's presentation.


The original chart carries with it the burden of Excel defaults.

What did I change and why?

I switched away from the default color scheme, which ignores the relationships between the two lines. In particular, the key comparison on this chart should be the actual case rate versus the nominal case rate. In addition, the three lines at the top are related as they all come from the same underlying mathematical model. I used the same color but different shades.

Also, instead of placing the legend as far away from the data labels as possible, I moved the line labels next to the data labels.

Instead of daily date labels, I moved to weekly labels, and set the month names on a separate level than the day names.

The dots were removed from the top three lines but I'd have retained them, perhaps with some level of transparency, if I spent more time making the edits. I'd definitely keep the last dot to make it clear that the blue lines contain one extra dot.


Every graphing program has defaults, typically computed by some algorithm tuned to the average chart. Don't settle for the average chart. Get rid of any default setting that slows down understanding.



Election visual 3: a strange, mash-up visualization

Continuing our review of FiveThirtyEight's election forecasting model visualization (link), I now look at their headline data visualization. (The previous posts in this series are here, and here.)


It's a set of 22 maps, each showing one election scenario, with one candidate winning. What chart form is this?

Small multiples may come to mind. A small-multiples chart is a grid in which every component graphic has the same form - same chart type, same color scheme, same scale, etc. The only variation from graphic to graphic is the data. The data are typically varied along a dimension of interest, for example, age groups, geographic regions, years. The following small-multiples chart, which I praised in the past (link), shows liquor consumption across the world.

image from

Each component graphic changes according to the data specific to a country. When we scan across the grid, we draw conclusions about country-to-country variations. As with convention, there are as many graphics as there are countries in the dataset. Sometimes, the designer includes only countries that are directly relevant to the chart's topic.


What is the variable FiveThirtyEight chose to vary from map to map? It's the scenario used in the election forecasting model.

This choice is unconventional. The 22 scenarios is a subset of the 40,000 scenarios from the simulation - we are left wondering how those 22 are chosen.

Returning to our question: what chart form is this?

Perhaps you're reminded of the dot plot from the previous post. On that dot plot, the designer summarized the results of 40,000 scenarios using 100 dots. Since Biden is the winner in 75 percent of all scenarios, the dot plot shows 75 blue dots (and 25 red).

The map is the new dot. The 75 blue dots become 16 blue maps (rounded down) while the 25 red dots become 6 red maps.

Is it a pictogram of maps? If we ignore the details on the maps, and focus on the counts of colors, then yes. It's just a bit challenging because of the hole in the middle, and the atypical number of maps.

As with the dot plot, the map details are a nice touch. It connects readers with the simulation model which can feel very abstract.

Oddly, if you're someone familiar with probabilities, this presentation is quite confusing.

With 40,000 scenarios reduced to 22 maps, each map should represent 1818 scenarios. On the dot plot, each dot should represent 400 scenarios. This follows the rule for creating pictograms. Each object in a pictogram - dot, map, figurine, etc. - should encode an equal amount of the data. For the 538 visualization, is it true that each of the six red maps represents 1818 scenarios? This may be the case but not likely.

Recall the dot plot where the most extreme red dot shows a scenario in which Trump wins 376 out of 538 electoral votes (margin = 214). Each dot should represent 400 scenarios. The visualization implies that there are 400 scenarios similar to the one on display. For the grid of maps, the following red map from the top left corner should, in theory, represent 1,818 similar scenarios. Could be, but I'm not sure.


Mathematically, each of the depicted scenario, including the blowout win above, occurs with 1/40,000 chance in the simulation. However, one expects few scenarios that look like the extreme scenario, and ample scenarios that look like the median scenario.  

So, the right way to read the 538 chart is to ignore the map details when reading the embedded pictogram, and then look at the small multiples of detailed maps bearing in mind that extreme scenarios are unique while median scenarios have many lookalikes.

(Come to think about it, the analogous situation in the liquor consumption chart is the relative population size of different countries. When comparing country to country, we tend to forget that the data apply to large numbers of people in populous countries, and small numbers in tiny countries.)


There's a small improvement that can be made to the detailed maps. As I compare one map to the next, I'm trying to pick out which states that have changed to change the vote margin. Conceptually, the number of states painted red should decrease as the winning margin decreases, and the states that shift colors should be the toss-up states.

So I'd draw the solid Republican (Democratic) states with a lighter shade, forming an easily identifiable bloc on all maps, while the toss-up states are shown with a heavier shade.


Here, I just added a darker shade to the states that disappear from the first red map to the second.

A testing mess: one chart, four numbers, four colors, three titles, wrong units, wrong lengths, wrong data

Twitterstan wanted to vote the following infographic off the island:


(The publisher's website is here but I can't find a direct link to this graphic.)

The mishap is particularly galling given the controversy swirling around this year's A-Level results in the U.K. For U.S. readers, you can think of A-Levels as SAT Subject Tests, which in the U.K. are required of all university applicants, and represent the most important, if not the sole, determinant of admissions decisions. Please see the upcoming post on my book blog for coverage of the brouhaha surrounding the statistical adjustments (to be posted sometime this week, it's here.).

The first issue you may notice about the chart is that the bar lengths have no relationship with the numbers printed on them. Here is a scatter plot correlating the bar lengths and the data.


As you can see, nothing.

Then, you may wonder what the numbers mean. The annotation at the bottom right says "Average number of A level qualifications per student". Wow, the British (in this case, English) education system is a genius factory - with the average student mastering close to three thousand subjects in secondary (high) school!

TES is the cool name for what used to be the Times Educational Supplement. I traced the data back to Ofqual, which is the British regulator for these examinations. This is the Ofqual version of the above chart:


The data match. You may see that the header of the data table reads "Number of students in England getting 3 x A*". This is a completely different metric than number of qualifications - in fact, this metric measures geniuses. "A*" is the U.K. equivalent of "A+". When I studied under the British system, there was no such grade. I guess grade inflation is happening all over the world. What used to be A is now A+, and what used to be B is now A. Scoring three A*s is tops - I wonder if this should say 3 or more because I recall that you can take as many subjects as you desire but most students max out at three (may have been four).

The number of students attaining the highest achievement has increased in the last two years compared to the two years before. We can't interpret these data unless we know if the number of students also grew at similar rates.

The units are students while the units we expect from the TES graphic should be subjects. The cutoff for the data defines top students while the TES graphic should connote minimum qualification, i.e. a passing grade.

Now, the next section of the Ofqual infographic resolves the mystery. Here is the chart:


This dataset has the right units and measurement. There is almost no meaningful shift in the last four years. The average number of qualifications per student is only different at the second decimal place. Replacing the original data with this set removes the confusion.


While I was re-making this chart, I also cleaned out the headers and sub-headers. This is an example of software hegemony: the designer wouldn't have repeated the same information three times on a chart with four numbers if s/he wasn't prompted by software defaults.


The corrected chart violates one of the conventions I described in my tutorial for color difference should reflect data difference.

In the following side-by-side comparison, you see that the use of multiple colors on the left chart signals different data - note especially the top and bottom bars which carry the same number, but our expectation is frustrated.



[P.S. 8/25/2020. Dan V. pointed out another problem with these bar charts: the bars were truncated so that the bar lengths are not proportional to the data. The corrected chart is shown on the right below:


8/26/2020: added link to the related post on my book blog.]

Visualizing black unemployment in the U.S.

In a prior post, I explained how the aggregate unemployment rate paints a misleading picture of the employment situation in the United States. Even though the U3 unemployment rate in 2019 has returned to the lowest level we have seen in decades, the aggregate statistic hides some concerning trends. There is an alarming rise in the proportion of people considered "not in labor force" by the Bureau of Labor Statistics - these forgotten people are not counted as "employable": when a worker drops out of the labor force, the unemployment rate ironically improves.

In that post, I looked at the difference between men and women. This post will examine the racial divide, whites and blacks.

I did not anticipate how many obstacles I'd encounter. It's hard to locate a specific data series, and it's harder to know whether the lack of search results indicates the non-existence of the data, or the incompetence of the search engine. Race-related data tend not to be offered in as much granularity. I was only able to find quarterly data for the racial analysis while I had monthly data for the gender analysis. Also, I only have data from 2000, instead of 1990.


As before, I looked at the official unemployment rate first, this time presented by race. Because whites form the majority of the labor force, the overall unemployment rate (not shown) is roughly the same as that for whites, just pulled up slightly toward the line for blacks.


The racial divide is clear as day. Throughout the past two decades, black Americans are much more likely to be unemployed, and worse during recessions.

The above chart determines the color encoding for all the other graphics. Notice that the best employment situations occurred on either end of this period, right before the dotcom bust in 2000, and in 2019 before the Covid-19 pandemic. As explained before, despite the headline unemployment rate being the same in those years, the employment situation was not the same.


Here is the scatter plot for white Americans:


Even though both ends of the trajectory are marked with the same shade of blue, indicating almost identical (low) rates of unemployment, we find that the trajectory has failed to return to its starting point after veering off course during the recession of the early 2010s. While the proportion of part-time workers (counted as employed) returned to 17.5% in 2019, as in 2000, about 15 percent more whites are now excluded from the unemployment rate calculation.

The experience of black Americans appears different:


During the first decade, the proportion of black Americans dropping out of the labor force accelerated while among those considered employed, the proportion holding part-time jobs kept increasing. As the U.S. recovered from the Great Recession, we've seen a boomerang pattern. By 2019, the situation was halfway back to 2000. The last available datum for the first quarter of 2020 is before Covid-19; it actually showed a halt of the boomerang.

If the pattern we saw in the prior post holds for the Covid-19 world, we would see a marked spike in the out-of-labor-force statistic, coupled with a drop in part-time employment. It appeared that employers were eliminating part-time workers first.


One reader asked about placing both patterns on the same chart. Here is an example of this:


This graphic turns out okay because the two strings of dots fit tightly into the grid while not overlapping. There is a lot going on here; I prefer a multi-step story than throwing everything on the wall.

There is one insight that this chart provides that is not easily observed in two separate plots. Over the two decades, the racial gap has narrowed in these two statistics. Both groups have traveled to the top right corner, which is the worst corner to reside -- where more people are classified as not employable, and more of the employed are part-time workers.

The biggest challenge with making this combined scatter plot is properly controlling the color. I want the color to represent the overall unemployment rate, which is a third data series. I don't want the line for blacks to be all red, and the line for whites to be all blue, just because black Americans face a tough labor market always. The color scheme here facilitates cross-referencing time between the two dot strings.

Designs of two variables: map, dot plot, line chart, table

The New York Times found evidence that the richest segments of New Yorkers, presumably those with second or multiple homes, have exited the Big Apple during the early months of the pandemic. The article (link) is amply assisted by a variety of data graphics.

The first few charts represent different attempts to express the headline message. Their appearance in the same article allows us to assess the relative merits of different chart forms.

First up is the always-popular map.


The advantage of a map is its ease of comprehension. We can immediately see which neighborhoods experienced the greater exoduses. Clearly, Manhattan has cleared out a lot more than outer boroughs.

The limitation of the map is also in view. With the color gradient dedicated to the proportions of residents gone on May 1st, there isn't room to express which neighborhoods are richer. We have to rely on outside knowledge to make the correlation ourselves.

The second attempt is a dot plot.


We may have to take a moment to digest the horizontal axis. It's not time moving left to right but income percentiles. The poorest neighborhoods are to the left and the richest to the right. I'm assuming that these percentiles describe the distribution of median incomes in neighborhoods. Typically, when we see income percentiles, they are based on households, regardless of neighborhoods. (The former are equal-sized segments, unlike the latter.)

This data graphic has the reverse features of the map. It does a great job correlating the drop in proportion of residents at home with the income distribution but it does not convey any spatial information. The message is clear: The residents in the top 10% of New York neighborhoods are much more likely to have left town.

In the following chart, I attempted a different labeling of both axes. It cuts out the need for readers to reverse being home to not being home, and 90th percentile to top 10%.


The third attempt to convey the income--exit relationship is the most successful in my mind. This is a line chart, with time on the horizontal axis.


The addition of lines relegates the dots to the background. The lines show the trend more clearly. If directly translated from the dot plot, this line chart should have 100 lines, one for each percentile. However, the closeness of the top two lines suggests that no meaningful difference in behavior exists between the 20th and 80th percentiles. This can be conveyed to readers through a short note. Instead of displaying all 100 percentiles, the line chart selectively includes only the 99th , 95th, 90th, 80th and 20th percentiles. This is a design choice that adds by subtraction.

Along the time axis, the line chart provides more granularity than either the map or the dot plot. The exit occurred roughly over the last two weeks of March and the first week of April. The start coincided with New York's stay-at-home advisory.

This third chart is a statistical graphic. It does not bring out the raw data but features aggregated and smoothed data designed to reveal a key message.

I encourage you to also study the annotated table later in the article. It shows the power of a well-designed table.

[P.S. 6/4/2020. On the book blog, I have just published a post about the underlying surveillance data for this type of analysis.]