Marketers want millennials to know they're millennials

When I posted about the lack of a standard definition of "millennials", Dean Eckles tweeted about the arbitrary division of age into generational categories. His view is further reinforced by the following chart, courtesy of PewResearch by way of MarketingCharts.com.

PewResearch-Generational-Identification-Sept2015

Pew asked people what generation they belong to. The amount of people who fail to place themselves in the right category is remarkable. One way to interpret this finding is that these are marketing categories created by the marketing profession. We learned in my other post that even people who use the term millennial do not have a consensus definition of it. Perhaps the 8 percent of "millennials" who identify as "boomers" are handing in a protest vote!

The chart is best read row by row - the use of stacked bar charts provides a clue. Forty percent of millennials identified as millennials, which leaves sixty percent identifying as some other generation (with about 5 percent indicating "other" responses). 

While this chart is not pretty, and may confuse some readers, it actually shows a healthy degree of analytical thinking. Arranging for the row-first interpretation is a good start. The designer also realizes the importance of the diagonal entries - what proportion of each generation self-identify as a member of that generation. Dotted borders are deployed to draw eyes to the diagonal.

***

The design doesn't do full justice for the analytical intelligence. Despite the use of the bar chart form, readers may be tempted to read column by column due to the color scheme. The chart doesn't have an easy column-by-column interpretation.

It's not obvious which axis has the true category and which, the self-identified category. The designer adds a hint in the sub-title to counteract this problem.

Finally, the dotted borders are no match for the differential colors. So a key message of the chart is buried.

Here is a revised chart, using a grouped bar chart format:

Redo_junkcharts_millennial_id

***

In a Trifecta checkup (link), the original chart is a Type V chart. It addresses a popular, pertinent question, and it shows mature analytical thinking but the visual design does not do full justice to the data story.

 

 


Does this chart tell the sordid tale of TI's decline?

The Hustle has an interesting article on the demise of the TI calculator, which is popular in business circles. The article uses this bar chart:

Hustle_ti_calculator_chart

From a Trifecta Checkup perspective, this is a Type DV chart. (See this guide to the Trifecta Checkup.)

The chart addresses a nice question: is the TI graphing calculator a victim of new technologies?

The visual design is marred by the use of the calculator images. The images add nothing to our understanding and create potential for confusion. Here is a version without the images for comparison.

Redo_junkcharts_hustlet1calc

The gridlines are placed to reveal the steepness of the decline. The sales in 2019 will likely be half those of 2014.

What about the Data? This would have been straightforward if the revenues shown are sales of the TI calculator. But according to the subtitle, the data include a whole lot more than calculators - it's the "other revenues" category in the financial reports of Texas Instrument which markets the TI. 

It requires a leap of faith to believe this data. It is entirely possible that TI calculator sales increased while total "other revenues" decreased! The decline of TI calculator could be more drastic than shown here. We simply don't have enough data to say for sure.

 

P.S. [10/3/2019] Fixed TI.

 

 


Pulling the multi-national story out, step by step

Reader Aleksander B. found this Economist chart difficult to understand.

Redo_multinat_1

Given the chart title, the reader is looking for a story about multinationals producing lower return on equity than local firms. The first item displayed indicates that multinationals out-performed local firms in the technology sector.

The pie charts on the right column provide additional information about the share of each sector by the type of firms. Is there a correlation between the share of multinationals, and their performance differential relative to local firms?

***

We can clean up the presentation. The first changes include using dots in place of pipes, removing the vertical gridlines, and pushing the zero line to the background:

Redo_multinat_2

The horizontal gridlines attached to the zero line can also be removed:

Redo_multinat_3

Now, we re-order the rows. Start with the aggregate "All sectors". Then, order sectors from the largest under-performance by multinationals to the smallest.

Redo_multinat_4

The pie charts focus only on the share of multinationals. Taking away the remainders speeds up our perception:

Redo_multinat_5

Help the reader understand the data by dividing the sectors into groups, organized by the performance differential:

Redo_multinat_6

For what it's worth, re-sort the sectors from largest to smallest share of multinationals:

Redo_multinat_7

Having created groups of sectors by share of multinationals, I simplify further by showing the average pie chart within each group:

Redo_multinat_8

***

To recap all the edits, here is an animated gif: (if it doesn't play automatically, click on it)

Redo_junkcharts_econmultinat

***

Judging from the last graphic, I am not sure there is much correlation between share of multinationals and the performance differentials. It's interesting that in aggregate, local firms and multinationals performed the same. The average hides the variability by sector: in some sectors, local firms out-performed multinationals, as the original chart title asserted.


Women workers taken for a loop or four

I was drawn to the following chart in Business Insider because of the calendar metaphor. (The accompanying article is here.)

Businessinsider_payday

Sometimes, the calendar helps readers grasp concepts faster but I'm afraid the usage here slows us down.

The underlying data consist of just four numbers: the wage gaps between race and gender in the U.S., considered simply from an aggregate median personal income perspective. The analyst adopts the median annual salary of a white male worker as a baseline. Then, s/he imputes the number of extra days that others must work to attain the same level of income. For example, the median Asian female worker must work 64 extra days (at her daily salary level) to match the white guy's annual pay. Meanwhile, Hispanic female workers must work 324 days extra.

There are a host of reasons why the calendar metaphor backfired.

Firstly, it draws attention to an uncomfortable detail of the analysis - which papers over the fact that weekends or public holidays are counted as workdays. The coloring of the boxes compounds this issue. (And the designer also got confused and slipped up when applying the purple color for Hispanic women.)

Secondly, the calendar focuses on Year 2 while Year 1 lurks in the background - white men have to work to get that income (roughly $46,000 in 2017 according to the Census Bureau).

Thirdly, the calendar view exposes another sore point around the underlying analysis. In reality, the white male workers are continuing to earn wages during Year 2.

The realism of the calendar clashes with the hypothetical nature of the analysis.

***

One can just use a bar chart, comparing the number of extra days needed. The calendar design can be considered a set of overlapping bars, wrapped around the shape of a calendar.

The staid bars do not bring to life the extra toil - the message is that these women have to work harder to get the same amount of pay. This led me to a different metaphor - the white men got to the destination in a straight line but the women must go around loops (extra days) before reaching the same endpoint.

Redo_businessinsider_racegenderpaygap

While the above is a rough sketch, I made sure that the total length of the lines including the loops roughly matches the total number of days the women needed to work to earn $46,000.

***

The above discussion focuses solely on the V(isual) corner of the Trifecta Checkup, but this data visualization is also interesting from the D(ata) perspective. Statisticians won't like such a simple analysis that ignores, among other things, the different mix of jobs and industries underlying these aggregate pay figures.

Now go to my other post on the sister (book) blog for a discussion of the underlying analysis.

 

 


Too much of a good thing

Several of us discussed this data visualization over twitter last week. The dataviz by Aero Data Lab is called “A Bird’s Eye View of Pharmaceutical Research and Development”. There is a separate discussion on STAT News.

Here is the top section of the chart:

Aerodatalab_research_top

We faced a number of hurdles in understanding this chart as there is so much going on. The size of the shapes is perhaps the first thing readers notice, followed by where the shapes are located along the horizontal (time) axis. After that, readers may see the color of the shapes, and finally, the different shapes (circles, triangles,...).

It would help to have a legend explaining the sizes, shapes and colors. These were explained within the text. The size encodes the number of test subjects in the clinical trials. The color encodes pharmaceutical companies, of which the graphic focuses on 10 major ones. Circles represent completed trials, crosses inside circles represent terminated trials, triangles represent trials that are still active and recruiting, and squares for other statuses.

The vertical axis presents another challenge. It shows the disease conditions being investigated. As a lay-person, I cannot comprehend the logic of the order. With over 800 conditions, it became impossible to find a particular condition. The search function on my browser skipped over the entire graphic. I believe the order is based on some established taxonomy.

***

In creating the alternative shown below, I stayed close to the original intent of the dataviz, retaining all the dimensions of the dataset. Instead of the fancy dot plot, I used an enhanced data table. The encoding methods reflect what I’d like my readers to notice first. The color shading reflects the size of each clinical trial. The pharmaceutical companies are represented by their first initials. The status of the trial is shown by a dot, a cross or a square.

Here is a sketch of this concept showing just the top 10 rows.

Redo_aero_pharmard

Certain conditions attracted much more investment. Certain pharmas are placing bets on cures for certain conditions. For example, Novartis is heavily into research on Meningnitis, meningococcal while GSK has spent quite a bit on researching "bacterial infections."


Re-thinking a standard business chart of stock purchases and sales

Here is a typical business chart.

Cetera_amd_chart

A possible story here: institutional investors are generally buying AMD stock, except in Q3 2018.

Let's give this chart a three-step treatment.

STEP 1: The Basics

Remove the data labels, which stand sideways awkwardly, and are redundant given the axis labels. If the audience includes people who want to take the underlying data, then supply a separate data table. It's easier to copy and paste from, and doing so removes clutter from the visual.

The value axis is probably created by an algorithm - hard to imagine someone deliberately placing axis labels  $262 million apart.

The gridlines are optional.

Redo_amdinstitution_1

STEP 2: Intermediate

Simplify and re-organize the time axis labels; show the quarter and year structure. The years need not repeat.

Align the vocabulary on the chart. The legend mentions "inflows and outflows" while the chart title uses the words "buying and selling". Inflows is buying; outflows is selling.

Redo_amdinstitution_2

STEP 3: Advanced

This type of data presents an interesting design challenge. Arguably the most important metric is the net purchases (or the net flow), i.e. inflows minus outflows. And yet, the chart form leaves this element in the gaps, visually.

The outflows are numerically opposite to inflows. The sign of the flow is encoded in the color scheme. An outflow still points upwards. This isn't a criticism, but rather a limitation of the chart form. If the red bars are made to point downwards to indicate negative flow, then the "net flow" is almost impossible to visually compute!

Putting the columns side by side allows the reader to visually compute the gap, but it is hard to visually compare gaps from quarter to quarter because each gap is hanging off a different baseline.

The following graphic solves this issue by focusing the chart on the net flows. The buying and selling are still plotted but are deliberately pushed to the side:

Redo_amd_1

The structure of the data is such that the gray and pink sections are "symmetric" around the brown columns. A purist may consider removing one of these columns. In other words:

Redo_amd_2

Here, the gray columns represent gross purchases while the brown columns display net purchases. The reader is then asked to infer the gross selling, which is the difference between the two column heights.

We are almost back to the original chart, except that the net buying is brought to the foreground while the gross selling is pushed to the background.

 


Pay levels in the U.S.

The Wall Street Journal published a graphic showing the median pay levels at "most" public companies in the U.S. here.

Wsj_mediancompanypay

People who attended my dataviz seminar might recognize the similarity with the graphic showing internet download speeds by different broadband technologies. It's a clean, clear way of showing multiple comparisons on the same chart.

You can see the distribution of pay levels of companies within each industry grouping, and the vertical lines showing the sector medians allow comparison across sectors. The median pay levels are quite similar with the energy sector leaning higher, and consumer sector leaning lower.

The consumer sector is extremely heavy on the low side of the pay range. Companies like Universal, Abercrombie, Skechers, Mattel, Gap, etc. all pay at least half their employees less than $6,000. The data is sourced to MyLogIQ. I have no knowledge of how reliable or valid the data are. It's curious to me that Dunkin Brands showed a median of $110K while Starbucks showed $13K.

Wsj_medianpay_dunkinstarbucks

***

I like the interactive features.

The window control lets the user zoom in to different parts of the pay range. This is necessary because of the extremely high salaries. The control doubles as a presentation of the overall distribution of median salaries.

The text box can be used to add data labels to specific companies.

***

See previous discussion of WSJ Graphics.

 


An exercise in decluttering

My friend Xan found the following chart by Pew hard to understand. Why is the chart so taxing to look at? 

Pew_collegeadmissions

It's packing too much.

I first notice the shaded areas. Shading usually signifies "look here". On this chart, the shading is highlighting the least important part of the data. Since the top line shows applicants and the bottom line admitted students, the shaded gap displays the rejections.

The numbers printed on the chart are growth rates but they confusingly do not sync with the slopes of the lines because the vertical axis plots absolute numbers, not rates. 

Pew_collegeadmissions_growthThe vertical axis presents the total number of applicants, and the total number of admitted students, in each "bucket" of colleges, grouped by their admission rate in 2017. On the right, I drew in two lines, both growth rates of 100%, from 500K to 1 million, and from 1 to 2 million. The slopes are not the same even though the rates of growth are.

Therefore, the growth rates printed on the chart must be read as extraneous data unrelated to other parts of the chart. Attempts to connect those rates to the slopes of the corresponding lines are frustrated.

Another lurking factor is the unequal sizes of the buckets of colleges. There are fewer than 10 colleges in the most selective bucket, and over 300 colleges in the largest bucket. We are unable to interpret properly the total number of applicants (or admissions). The quantity of applications in a bucket depends not just on the popularity of the colleges but also the number of colleges in each bucket.

The solution isn't to resize the buckets but to select a more appropriate metric: the number of applicants per enrolled student. The most selective colleges are attracting about 20 applicants per enrolled student while the least selective colleges (those that accept almost everyone) are getting 4 applicants per enrolled student, in 2017.

As the following chart shows, the number of applicants has doubled across the board in 15 years. This raises an intriguing question: why would a college that accepts pretty much all applicants need more applicants than enrolled students?

Redo_pewcollegeadmissions

Depending on whether you are a school administrator or a student, a virtuous (or vicious) cycle has been realized. For the top four most selective groups of colleges, they have been able to progressively attract more applicants. Since class size did not expand appreciably, more applicants result in ever-lower admit rate. Lower admit rate reduces the chance of getting admitted, which causes prospective students to apply to even more colleges, which further suppresses admit rate. 

 

 

 


Visualizing the 80/20 rule, with the bar-density plot

Through Twitter, Danny H. submitted the following chart that shows a tiny 0.3 percent of Youtube creators generate almost 40 percent of all viewing on the platform. He asks for ideas about how to present lop-sided data that follow the "80/20" rule.

Dannyheiman_twitter_youtubedata

In the classic 80/20 rule, 20 percent of the units account for 80 percent of the data. The percentages vary, so long as the first number is small relative to the second. In the Youtube example, 0.3 percent is compared to 40 percent. The underlying reason for such lop-sidedness is the differential importance of the units. The top units are much more important than the bottom units, as measured by their contribution to the data.

I sense a bit of "loss aversion" on this chart (explained here). The designer color-coded the views data into blue, brown and gray but didn't have it in him/her to throw out the sub-categories, which slows down cognition and adds hardly to our understanding.

I like the chart title that explains what it is about.

Turning to the D corner of the Trifecta Checkup for a moment, I suspect that this chart only counts videos that have at least one play. (Zero-play videos do not show up in a play log.) For a site like Youtube, a large proportion of uploaded videos have no views and thus, many creators also have no views.

***

My initial reaction on Twitter is to use a mirrored bar chart, like this:

Jc_redo_youtube_mirrorbar_lobsided

I ended up spending quite a bit of time exploring other concepts. In particular, I like to find an integrated way to present this information. Most charts, such as the mirrored bar chart, a Bumps chart (slopegraph), and Lorenz chart, keep the two series of percentages separate.

Also, the biggest bar (the gray bar showing 97% of all creators) highlights the least important Youtubers while the top creators ("super-creators") are cramped inside a slither of a bar, which is invisible in the original chart.

What I came up with is a bar-density plot, where I use density to encode the importance of creators, and bar lengths to encode the distribution of views.

Jc_redo_youtube_bar_h_2col

Each bar is divided into pieces, with the number of pieces proportional to the number of creators in each segment. This has the happy result that the super-creators are represented by large (red) pieces while the least important creators by little (gray) pieces.

The embedded tessellation shows the structure of the data: the bottom third of the views are generated by a huge number of creators, producing a few views each - resulting in a high density. The top 38% of the views correspond to a small number of super-creators - appropriately shown by a bar of low density.

For those interested in technicalities, I embed a Voronoi diagram inside each bar, with randomly placed points. (There will be a companion post later this week with some more details, and R code.)

Here is what the bar-density plot looks like when the distribution is essentially uniform:

Jc_redo_youtube_bar_even
The density inside each bar is roughly the same, indicating that the creators are roughly equally important.

 

P.S.

1) The next post on the bar-density plot, with some experimental R code, will be available here.

2) Check out my first Linkedin "article" on this topic.

 

 

 

 

 


Is the visual serving the question?

The following chart concerns California's bullet train project.

California_bullettrain

Now, look at the bubble chart at the bottom. Here it is - with all the data except the first number removed:

Highspeedtrains_sufficiency

It is impossible to know how fast the four other train systems run after I removed the numbers. The only way a reader can comprehend this chart is to read the data inside the bubbles. This chart fails the "self-sufficiency test". The self-sufficiency test asks how much work the visual elements on the chart are doing to communicate the data; in this case, the bubbles do nothing at all.

Another problem: this chart buries its lede. The message is in the caption: how California's bullet train rates against other fast train systems. California's train speed of 220 mph is only mentioned in the text but not found in the visual.

Here is a chart that draws attention to the key message:

Redo_highspeedtrains

In a Trifecta checkup, we improved this chart by bringing the visual in sync with the central question of the chart.