Deficient deficit depiction

A twitter user alerted me to this chart put out by the Biden adminstration trumpeting a reduction in the budget deficit from 2020 to 2021:


This column chart embodies a form that is popular in many presentations, including in scientific journals. It's deficient in so many ways it's a marvel how it continues to live.

There are just two numbers: -3132 and -2772. Their difference is $360 billion, which is less than just over 10 percent of the earlier number. It's not clear what any data graphic can add.

Indeed, the chart does not do much. It obscures the actual data. What is the budget deficit in 2020? Readers must look at the axis labels, and judge that it's about a quarter of the way between 3000 and 3500. Five hundred quartered is 125. So it's roughly $3.125 trillion. Similarly, the 2021 number is slightly above the halfway point between 2,500 and 3,000.

These numbers are upside down. Taller columns are bad! Shortening the columns is good. It's all counter intuitive.

Column charts encode data in the heights of the columns. The designer apparently wants readers to believe the deficit has been cut by about a third.

As usual, this deception is achieved by cutting the column chart off at its knees. Removing equal sections of each column destroys the propotionality of the heights.

Why hold back? Here's a version of the chart showing the deficit was cut by half:


The relative percent reduction depends on where the baseline is placed. The only defensible baseline is the zero baseline. That's the only setting under which the relative percent reduction is accurately represented visually.


This same problem presents itself subtly in Covid-19 vaccine studies. I explain in this post, which I rate as one of my best Covid-19 posts. Check it out!



The what of visualization, beyond the how

A long-time reader sent me the following chart from a Nature article, pointing out that it is rather worthless.


The simple bar chart plots the number of downloads, organized by country, from the website called Sci-Hub, which I've just learned is where one can download scientific articles for free - working around the exorbitant paywalls of scientific journals.

The bar chart is a good example of a Type D chart (Trifecta Checkup). There is nothing wrong with the purpose or visual design of the chart. Nevertheless, the chart paints a misleading picture. The Nature article addresses several shortcomings of the data.

The first - and perhaps most significant - problem is that many Sci-Hub users are expected to access the site via VPN servers that hide their true countries of origin. If the proportion of VPN users is high, the entire dataset is called into doubt. The data would contain both false positives (in countries with VPN servers) and false negatives (in countries with high numbers of VPN users). 

The second problem is seasonality. The dataset covered only one month. Many users are expected to be academics, and in the southern hemisphere, schools are on summer vacation in January and February. Thus, the data from those regions may convey the wrong picture.

Another problem, according to the Nature article, is that Sci-Hub has many competitors. "The figures include only downloads from original Sci-Hub websites, not any replica or ‘mirror’ site, which can have high traffic in places where the original domain is banned."

This mirror-site problem may be worse than it appears. Yes, downloads from Sci-Hub underestimate the entire market for "free" scientific articles. But these mirror sites also inflate Sci-Hub statistics. Presumably, these mirror sites obtain their inventory from Sci-Hub by setting up accounts, thus contributing lots of downloads.


Even if VPN and seasonality problems are resolved, the total number of downloads should be adjusted for population. The most appropriate adjustment factor is the population of scientists, but that statistic may be difficult to obtain. A useful proxy might be the number of STEM degrees by country - obtained from a UNESCO survey (link).

A metric of the type "number of Sci-Hub downloads per STEM degree" sounds odd and useless. I'd argue it's better than the unadjusted total number of Sci-Hub downloads. Just don't focus on the absolute values but the relative comparisons between countries. Even better, we can convert the absolute values into an index to focus attention on comparisons.


Improving simple bar charts

Here's another bar chart I came across recently. The chart - apparently published by Kaggle - appeared to present challenges data scientists face in industry:


This chart is pretty standard, and inoffensive. But we can still make it better.

Version 1


I removed the decimals from the data labels.

Version 2


Since every bar is labelled, is anyone looking at the axis labels?

Version 3


You love axis labels. Then, let's drop the data labels.

Version 4


Ahh, so data scientists struggle with data problems, and people issues. They don't need better tools.

Easy breezy bar charts, perhaps

I came across the following bar chart (link), which presents the results of a survey of CMOs (Chief Marketing Officers) on their attitudes toward data analytics.

Big-Data-and-the-CMO_chart5-Hurdle-800_30Apr2013Responses are tabulated to the question about the most significant hurdle(s) against the increasing use of data and analytics for marketing.

Eleven answers were presented, in addition to the catchall "Other" response. I'm unable to divine the rule used by the designer to sequence the responses.

It's not in order of significance, the most obvious choice. It's not alphabetical, either.


I think this indiscretion is partially redeemed by the use of color shades. The darkest blue shade points our eyes to the most significant hurdle - lack of investment in technology (44% of respondents). The second most significant hurdle is "availability of credible tools for measuring effectiveness" (31%), and that too is in dark blue.

Now what? The third most popular answer has 30% of the respondents, but it's shown by the second palest blue! I then realize the colors don't actually convey any information. Five shades of blue were selected, and they are laid out from top to bottom, from palest to darkest, in a sequential, recursive manner.


This chart is wild. Notice how the heights of the bars are variable. It seems that some bars have been widened to accommodate wrapped lines of text. These small edits introduce visual distortion so that the areas of these bars no longer are proportional to the data.

I like a pair of design decisions. Not showing decimal places and appending the % sign on each bar label is good. They also extend the horizontal axis to 100%. This shows what proportion of the respondents selected any particular answer - we note that a respondent is allowed to select more than one response.

The following is a more standard way of making a bar chart. (The color shading is not necessary.)


This example proves that the V corner of the Trifecta Checkup is still relevant. After one develops a good question, collects useful data and selects a standard chart form, figuring out how to visually display the information is not as easy breezy as one might think.

Visualizing composite ratings

A twitter reader submitted the following chart from Autoevolution (link):


This is not a successful chart for the simple reason that readers want to look away from it. It's too busy. There is so much going on that one doesn't know where to look.

The underlying dataset is quite common in the marketing world. Through surveys, people are asked to rate some product along a number of dimensions (here, seven). Each dimension has a weight, and combined, the weighted sum becomes a composite ranking (shown here in gray).

Nothing in the chart stands out as particularly offensive even though the overall effect is repelling. Adding the overall rating on top of each column is not the best idea as it distorts the perception of the column heights. But with all these ingredients, the food comes out bland.


The key is editing. Find the stories you want to tell, and then deconstruct the chart to showcase them.

I start with a simple way to show the composite ranking, without any fuss:


[Since these are mockups, I have copied all of the data, just the top 11 items.]

Then, I want to know if individual products have particular strengths or weaknesses along specific dimensions. In a ranking like this, one should expect that some component ratings correlate highly with the overall rating while other components deviate from the overall average.

An example of correlated ratings is the Customers dimension.


The general pattern of the red dots clings closely to that of the gray bars. The gray bars are the overall composite ratings (re-scaled to the rating range for the Customers dimension). This dimension does not tell us more than what we know from the composite rating.

By contrast, the Developers Ecosystem dimension provides additional information.


Esri, AzureMaps and Mapbox performed much better on this dimension than on the average dimension. 


The following construction puts everything together in one package:


Best chart I have seen this year

Marvelling at this chart:



The credit ultimately goes to a Reddit user (account deleted). I first saw it in this nice piece of data journalism by my friends at System 2 (link). They linked to Visual Capitalism (link).

There are so many things on this one chart that makes me smile.

The animation. The message of the story is aging population. Average age is moving up. This uptrend is clear from the chart, as the bulge of the population pyramid is migrating up.

The trend happens to be slow, and that gives the movement a mesmerizing, soothing effect.

Other items on the chart are synced to the time evolution. The year label on the top but also the year labels on the right side of the chart, plus the counts of total population at the bottom.

OMG, it even gives me average age, and life expectancy, and how those statistics are moving up as well.

Even better, the designer adds useful context to the data: look at the names of the generations paired with the birth years.

This chart is also an example of dual axes that work. Age, birth year and current year are connected to each other, and given two of the three, the third is fixed. So even though there are two vertical axes, there is only one scale.

The only thing I'm not entirely convinced about is placing the scroll bar on the very top. It's a redundant piece that belongs to a less prominent part of the chart.

Graphing highly structured data

The following sankey diagram appeared in my Linkedin feed the other day, and I agree with the poster that this is an excellent example.


It's an unusual use of a flow chart to show the P&L (profit and loss) statement of a business. It makes sense since these are flows of money. The graph explains how Spotify makes money - or how little profit it claims to have earned on over 2.5 billion of revenues.

What makes this chart work so well?

The first thing to notice is how they handled negative flows (costs). They turned the negative numbers into positive numbers, and encoded the signs of the numbers as colors. This doesn't come as naturally as one might think. The raw data are financial tables with revenues shown as positive numbers and costs shown as negative numbers, perhaps in parentheses. Like this:


Now, some readers are sure to have an issue with using the red-green color scheme. I suppose gray-red can be a substitute.

The second smart decision is to pare down the details. There are only four cost categories shown in the entire chart. The cost of revenue represents more than two-thirds of all revenues, and we know nothing about sub-categories of this cost.

The third feature is where the Spotify logo is placed. This directs our attention to the middle of the diagram. This is important because typically on a sankey diagram you read from left to right. Here, the starting point is really the column labeled "total Spotify revenue". The first column just splits the total revenue between subscription revenue and advertising revenue.

Putting the labels of the last column inside the flows improves readability as well.

On the whole, a job well done.


Sankey diagrams have limitations. The charts need to be simple enough to work their magic.

It's difficult to add a time element to the above chart, for example. The next question a business analyst might want to ask is how the revenue/cost/profit structure at Spotify have changed over time.

Another question a business analyst might ask is the revenue/cost/profit structure of premium vs ad-supported users. We have a third of the answer - the revenue split. Depending on relative usage, and content preference, the mix of royalties is likely not to replicate the revenue split.

Yet another business analyst might be interested in comparing Spotify's business model to a competitor. It's also not simple to handle this on a sankey diagram.


I searched for alternative charts, and when you look at what's out there, you appreciate the sankey version more.

Here is a waterfall chart, which is quite popular:


Here is a stacked column chart, rooted at zero:


Of course, someone has to make a pie chart - in this case, two pie charts:






Displaying convoluted indices

I reviewed another batch of projects from Ray Vella's class at NYU. The following piece by Carlos Lasso made an impression on me. There are no pyrotechnics but he made one decision that added a lot of clarity to the graphic.

The Rich get Richer - Carlos Lasso

The underlying dataset gauges the income disparity of regions within nine countries. The richest and the poorest regions are selected for each country. Two time points are shown. Altogether, there are 9x2x2 = 36 numbers.


Let's take a deeper look at these numbers. Notice they are not in dollars, or any kind of currency, despite being about incomes. The numbers are index values, relative to 100. What does the reference level of 100 represent?

The value of 100 crosses every bar of the chart so that 100 has meaning in each country and each year. In fact, there are 18 definitions of 100 in this chart with 36 numbers, one for each country-year pair. The average national income is set to 100 for each country in each year. This is a highly convoluted indexing strategy.

The following chart is a re-visualization of the bottom part of Carlos' infographic.


I shifted the scale of the horizontal axis. The value of zero does not hold special meaning in Carlos' chart. I subtracted 100 from the relative regional income indices, thus all regions with income above the average have positive values while those below the national average have negative values. (There are other challenges with the ratio scale, which I'll skip over in this post. The minimum value is -100 while the maximum value can be very large.)

The rescaling is not really the point of this post. To see what Carlos did, we have to look at the example shown in class. The graphic which the students were asked to improve has the following structure:


This one-column structure places four bars beside each country, grouped by year. Carlos pulled the year dimension out, and showed the same dataset in two columns.

This small change makes a great difference in ease of comprehension. Carlos' version unpacks the two key types of comparisons one might want to make: trend within a given country (horizontal comparison) and contrast between countries in a given year (vertical comparison).


I always try to avoid convoluted indexing. The cost of using such indices is the big how-to-read-this box.

Asymmetry and orientation

An author in Significance claims that a single season of Premier League football without live spectators is enough to prove that the so-called home field advantage is really a live-spectator advantage.

The following chart depicts the data going back many seasons:


I find this bar chart challenging.

It plots the ratio of home wins to away wins using an odds scale, which is not intuitive. The odds scale (probability of success divided by probability of failure) runs from 0 to positive infinity, with 1 being a special value indicating equal odds. But all the values for which away wins exceed home wins are squeezed into the interval between 0 and 1 while the values for which home wins exceed away wins are laid out between 1 and infinity. So it's an inherently asymmetric graphic for a symmetric formula.

The section labeled "more away wins than home wins" are filled with red bars for all those seasons with positive home field advantage while the most recent season, the outlier, has a shorter bar in that section than the rest.

Here's an alternative view:


I have incorporated dual axes here - but both axes are different only by scaling. There are 380 games in a Premier League season so the percentage scale is just a re-expression of the counts.