A note to science journal editors: require better visuals

In reviewing a new small-scale study of the Moderna vaccine, I found this chart:

Modernahalfdoses_fig3a

This style of charts is quite common in scientific papers. And they are horrible. It irks me to think that some authors are forced to adopt such styles.

The study's main goal is to compare two half doses to two full doses of the Moderna vaccine. (To understand the science, read the post on my book blog.) The participants were stratified by age group. The vaccine is expected to work better for younger people than for older people. The point of the study isn't to measure the difference by age group, and so the age-group dimension is secondary.

Upon recognizing that, I reduce the number of colors from 4 to 2:

Junkcharts_redo_modernahalfdoses_1

Halving the number of colors presents no additional difficulty. The reader spends less time cross-referencing.

The existence of the Pbo (placebo) and Conv (convalescent plasma) columns on the sides is both unsightly and suboptimal. The "Conv" serves as a reference level for the amount of antibodies the vaccine stimulates in people. A better way to display reference levels is using reference lines.

Junkcharts_redo_modernahalfdoses_2color

The biggest problem with the chart is the log scale on the vertical axis. This isn't even a log-10 but a log-2. (Each tick is a doubling of value.)

Take the first set of columns as an example. The second column is clearly less than twice the height of the first column, and yet 25 is 3.5 times bigger than 7.  The third column is also visually less than double the size of the second column, and yet 189 is 7.5 times bigger than 25. The areas (heights) of the columns do not convey the right information about relative sizes of the underlying data.

Here's an amusing observation. The brown area shaded below is half of the entire area of the chart - if we reverted it to a linear scale. And yet there is not a single data point above 250 in the data so the brown area is entirely empty.

Junkcharts_redo_modernahalfdoses_logscale

An effect of a log scale is to compress the larger values of a dataset. That's what you're seeing here.

I now revisualize using dotplots:

Junkcharts_redo_modernahalfdoses_dotplotlinear

The version on the left retains the log scale while the right one (pun intended) reverts to the linear scale.

The biggest effect by far is the spike of antibodies between day 29 and 43 - which is after the second shot is administered. (For Moderna, the second shot is targeted for day 28.) In fact, it is during that window that the level of antibodies went from below the "conv" level (i.e. from natural infection) to far above.

The log-scale version buries this finding because it squeezes the large numbers on the chart. In addition, it artificially pulls the small numbers toward the "Conv" level. On the right chart, the second dot for 18-54, full doses is only at half the level of "Conv"  but it looks tantalizing close to the "Conv" level on the left chart.

The authors of the study also claim that there is negligible dropoff by 30 days after the second dose, i.e. between the third and fourth dots in each set. That may be so on the log-scale chart but on the linear chart, we see a moderate reduction. I don't believe the size of this study allows us to make a stronger conclusion but the claim of no dropoff is dubious.

The left chart also obscures the age-group differences. It appears as if all four sets show roughly the same pattern. With the linear scale, we notice that the vaccine clearly works better for the younger subgroup. As I discussed on the book blog, no one actually knows what level of antibodies constitutes "protection," and so I can't say whether that age-group difference has practical significance.

***

I recommend using log scales sparingly and carefully. They are a source of much mischief and misadventure.

 

 

 


These are the top posts of 2020

It's always very interesting as a writer to look back at a year's of posts and find out which ones were most popular with my readers.

Here are the top posts on Junk Charts from 2020:

How to read this chart about coronavirus risk

This post about a New York Times scatter plot dates from February, a time when many Americans were debating whether Covid-19 was just the flu.

Proportions and rates: we are no dupes

This post about a ArsTechnica chart on the effects of Covid-19 by age is an example of designing the visual to reflect the structure of the data.

When the pie chart is more complex than the data

This post shows a 3D pie chart which is worse than a 2D pie chart.

Twitter people upset with that Covid symptoms diagram

This post discusses some complicated graphics designed to illustrate complicated datasets on Covid-19 symptoms.

Cornell must remove the logs before it reopens in the fall

This post is another warning to think twice before you use log scales.

What is the price of objectivity?

This post turns an "objective" data visualization into a piece of visual story-telling.

The snake pit chart is the best election graphic ever

This post introduces my favorite U.S. presidential election graphic, designed by the FiveThirtyEight team.

***

Here is a list of posts that deserve more attention:

Locating the political center

An example of bringing readers as close to the insights as possible

Visualizing change over time

An example of designing data visualization to reflect the structure of multivariate data

Bloomberg made me digest these graphics slowly

An example of simple and thoughtful graphics

The hidden bad assumption behind most dual-axis time-series charts

Read this before you make a dual-axis chart

Pie chart conventions

Read this before you make a pie chart

***
Looking forward to bring you more content in 2021!

Happy new year.


Atypical time order and bubble labeling

This chart appeared in a Charles Schwab magazine in Summer, 2019.

Schwab_volatility2018

This bubble chart does not print any data labels. The bubbles take our attention but the designer realizes that the actual values of the volatility are not intuitive numbers. The same is true of any standard deviation numbers. If you're told SD of a data series is 3, it doesn't tell you much by itself.

I first transformed this chart into the equivalent column chart:

Junkcharts_redo_schwabvolatility_columnrank

Two problems surface on the axes.

For the time axis, the years are jumbled. Readers experience vertigo, as we try to figure out how to read the chart. Our expectation that time moves left to right is thwarted. This ordering also requires every single year label to be present.

For the vertical axis, I could have left out the numbers completely. They are not really meaningful. These represent the areas of the bubbles but only relative to how I measured them.

***

In the next version, I sorted time in the conventional manner. Following Tufte's classic advice, only the tops of the columns are plotted.

Junkcharts_redo_schwabvolatility_hashyear

What you see is that this ordering is much easier to comprehend. Figuring out that 2018 is an average year in terms of volatility is not any harder than in the original. In fact, we can reproduce the order of the previous chart just by letting our eyes sweep top to bottom.

To make it even easier to read the vertical axis, I converted the numbers into an index, with the average volatility as 100 (assigned to 0% on the chart) .

Junkcharts_redo_schwabvolatility_hashyearrelative

Now, you can see that 2018 is roughly at the average while 2008 is 400% above the average level. (How should we interpret this statement? That's a question I pose to my statistics students. It's not intuitive how one should interpret the statement that the standard deviation is 5 times higher.)

 

 


Is this an example of good or bad dataviz?

This chart is giving me feelings:

Trump_mcconnell_chart

I first saw it on TV and then a reader submitted it.

Let's apply a Trifecta Checkup to the chart.

Starting at the Q corner, I can say the question it's addressing is clear and relevant. It's the relationship between Trump and McConnell's re-election. The designer's intended message comes through strongly - the chart offers evidence that McConnell owes his re-election to Trump.

Visually, the graphic has elements of great story-telling. It presents a simple (others might say, simplistic) view of the data - just the poll results of McConnell vs McGrath at various times, and the election result. It then flags key events, drawing the reader's attention to those. These events are selected based on key points on the timeline.

The chart includes wise design choices, such as no gridlines, infusing the legend into the chart title, no decimals (except for last pair of numbers, the intention of which I'm not getting), and leading with the key message.

I can nitpick a few things. Get rid of the vertical axis. Also, expand the scale so that the difference between 51%-40% and 58%-38% becomes more apparent. Space the time points in proportion to the dates. The box at the bottom is a confusing afterthought that reduces rather than assists the messaging.

But the designer got the key things right. The above suggestions do not alter the reader's expereince that much. It's a nice piece of visual story-telling, and from what I can see, has made a strong impact with the audience it is intended to influence.

_trifectacheckup_junkchartsThis chart is proof why the Trifecta Checkup has three corners, plus linkages between them. If we just evaluate what the visual is conveying, this chart is clearly above average.

***

In the D corner, we ask: what the Data are saying?

This is where the chart runs into several problems. Let's focus on the last two sets of numbers: 51%-40% and 58%-38%. Just add those numbers and do you notice something?

The last poll sums to 91%. This means that up to 10% of the likely voters responded "not sure" or some other candidate. If these "shy" voters show up at the polls as predicted by the pollsters, and if they voted just like the not shy voters, then the election result would have been 56%-44%, not 51%-40%. So, the 58%-38% result is within the margin of error of these polls. (If the "shy" voters break for McConnell in a 75%-25% split, then he gets 58% of the total votes.)

So, the data behind the line chart aren't suggesting that the election outcome is anomalous. This presents a problem with the Q-D and D-V green arrows as these pairs are not in sync.

***

In the D corner, we should consider the totality of the data available to the designer, not just what the designer chooses to utilize. The pivot of the chart is the flag annotating the "Trump robocall."

Here are some questions I'd ask the designer:

What else happened on October 31 in Kentucky?

What else happened on October 31, elsewhere in the country?

Was Trump featured in any other robocalls during the period portrayed?

How many robocalls were made by the campaign, and what other celebrities were featured?

Did any other campaign event or effort happen between the Trump robocall and election day?

Is there evidence that nothing else that happened after the robocall produced any value?

The chart commits the XYopia (i.e. X-Y myopia) fallacy of causal analysis. When the data analyst presents one cause and one effect, we are cued to think the cause explains the effect but in every scenario that is not a designed experiment, there are multiple causes at play. Sometimes, the more influential cause isn't the one shown in the chart.

***

Finally, let's draw out the connection between the last set of poll numbers and the election results. This shows why causal inference in observational data is such a beast.

Poll numbers are about a small number of people (500-1,000 in the case of Kentucky polls) who respond to polling. Election results are based on voters (> 2 million). An assumption made by the designer is that these polls are properly conducted, and their results are credible.

The chart above makes the claim that Trump's robocall gave McConnell 7% more votes than expected. This implies the robocall influenced at least 140,000 voters. Each such voter must fit the following criteria:

  • Was targeted by the Trump robocall
  • Was reached by the Trump robocall (phone was on, etc.)
  • Responded to the Trump robocall, by either picking up the phone or listening to the voice recording or dialing a call-back number
  • Did not previously intend to vote for McConnell
  • If reached by a pollster, would refuse to respond, or say not sure, or voting for McGrath or a third candidate
  • Had no other reason to change his/her behavior

Just take the first bullet for example. If we found a voter who switched to McConnell after October 31, and if this person was not on the robocall list, then this voter contributes to the unexpected gain in McConnell votes but weakens the case that the robocall influenced the election.

As analysts, our job is to find data to investigate all of the above. Some of these are easier to investigate. The campaign knows, for example, how many people were on the target list, and how many listened to the voice recording.

 

 

 

 


Aligning the visual and the data

The Washington Post reported a surge in donations to the Democrats after the death of Justice Ruth Ginsberg (link). A secondary effect, perhaps unexpected, was that donors decided to spread the money around; the proportion of donors who gave to six or more candidates jumped to 65%, where normally it is at 5%.

Wapo_donations

The text tells us what to look for, and the axis labels are commendably restrained. The color scheme is also intuitive.

There is something frustrating about this chart, though. It's that the spike is shown upside down. The level that the arrow points at is 45%, which is the total of the blue columns. The visual suggests the proportion of multiple beneficiaries (2 or more) should be 55%. There is a divergence between what the visual is saying and what the data are saying. Whichever number is correct, the required proportion is the inverse of the level shown on the percentage axis!

***

This is the same chart flipped over.

Junkcharts_redo_wapo_donations

Now, the number we need can be read off the vertical axis.

I also moved the color legend to the right side so that the entries can be printed vertically, in the same direction as the data. This is one of the unspoken rules of data visualization I featured in my feature for DataJournalism.com.

***

In the Trifecta Checkup (link), the issue is with the green arrow between the D corner and the V corner. The data and the visual are not in sync. 

 


Locating the political center

I mentioned the September special edition of Bloomberg Businessweek on the election in this prior post. Today, I'm featuring another data visualization from the magazine.

Bloomberg_politicalcenter_print_sm

***

Here are the rightmost two charts.

Bloomberg_politicalcenter_rightside Time runs from top to bottom, spanning four decades.

Each chart covers a political issue. These two charts concern abortion and marijuana.

The marijuana question (far right) has only two answers, legalize or don't legalize. The underlying data measure the proportions of people agreeing to each point of view. Roughly three-quarters of the population disagreed with legalization in 1980 while two-thirds agree with it in 2020.

Notice that there are no horizontal axis labels. This is a great editorial decision. Only coarse trends are of interest here. It's not hard to figure out the relative proportions. Adding labels would just clutter up the display.

By contrast, the abortion question has three answer choices. The middle option is "Sometimes," which is represented by a white color, with a dot pattern. This is an issue on which public opinion in aggregate has barely shifted over time.

The charts are organized in a small-multiples format. It's likely that readers are consuming each chart individually.

***

What about the dashed line that splits each chart in half? Why is it there?

The vertical line assists our perception of the proportions. Think of it as a single gridline.

In fact, this line is underplayed. The headline of the article is "tracking the political center." Where is the center?

Until now, we've paid attention to the boundaries between the differently colored areas. But those boundaries do not locate the political center!

The vertical dashed line is the political center; it represents the view of the median American. In 1980, the line sat inside the gray section, meaning the median American opposed legalizing marijuana. But the prevalent view was losing support over time and by 2010, there wer more Americans wanting to legalize marijuana than not. This is when the vertical line crossed into the green zone.

The following charts draw attention to the middle line, instead of the color boundaries:

Junkcharts_redo_bloombergpoliticalcenterrightsideOn these charts, as you glance down the middle line, you can see that for abortion, the political center has never exited the middle category while for marijuana, the median American didn't want to legalize it until an inflection point was reached around 2010.

I highlight these inflection points with yellow dots.

***

The effect on readers is entirely changed. The original charts draw attention to the areas first while the new charts pull your eyes to the vertical line.

 


Deaths as percent neither of cases nor of population. Deaths as percent of normal.

Yesterday, I posted a note about excess deaths on the book blog (link). The post was inspired by a nice data visualization by the New York Times (link). This is a great example of data journalism.

Nyt_excessdeaths_south

Excess deaths is a superior metric for measuring the effect of Covid-19 on public health. It's better than deaths as percent of cases. Also better than percent of the population.What excess deaths measure is deaths as a percent of normal. Normal is usually defined as the average deaths in the respective week in years past.

The red areas indicate how far the deaths in the Southern states are above normal. The highest peak, registered in Texas in late July, is 60 percent above the normal level.

***

The best way to appreciate the effort that went into this graphic is to imagine receiving the outputs from the model that computes excess deaths. A three-column spreadsheet with columns "state", "week number" and "estimated excess deaths".

The first issue is unequal population sizes. More populous states of course have higher death tolls. Transforming death tolls to an index pegged to the normal level solves this problem. To produce this index, we divide actual deaths by the normal level of deaths. So the spreadsheet must be augmented by two additional columns, showing the historical average deaths and actual deaths for each state for each week. Then, the excess death index can be computed.

The journalist builds a story around the migration of the coronavirus between different regions as it rages across different states  during different weeks. To this end, the designer first divides the dataset into four regions (South, West, Midwest and Northeast). Within each region, the states must be ordered. For each state, the week of peak excess deaths is identified, and the peak index is used to sort the states.

The graphic utilizes a small-multiples framework. Time occupies the horizontal axis, by convention. The vertical axis is compressed so that the states are not too distant. For the same reason, the component graphs are allowed to overlap vertically. The benefit of the tight arrangement is clearer for the Northeast as those peaks are particularly tall. The space-saving appearance reminds me of sparklines, championed by Ed Tufte.

There is one small tricky problem. In most of June, Texas suffered at least 50 percent more deaths than normal. The severity of this excess death toll is shortchanged by the low vertical height of each component graph. What forced such congestion is probably the data from the Northeast. For example, New York City:

Nyt_excessdeaths_northeast3

 

New York City's death toll was almost 8 times the normal level at the start of the epidemic in the U.S. If the same vertical scale is maintained across the four regions, then the Northeastern states dwarf all else.

***

One key takeaway from the graphic for the Southern states is the persistence of the red areas. In each state, for almost every week of the entire pandemic period, actual deaths have exceeded the normal level. This is strong indication that the coronavirus is not under control.

In fact, I'd like to see a second set of plots showing the cumulative excess deaths since March. The weekly graphic is better for identifying the ebb and flow while the cumulative graphic takes measure of the total impact of Covid-19.

***

The above description leaves out a huge chunk of work related to computing excess deaths. I assumed the designer receives these estimates from a data scientist. See the related post in which I explain how excess deaths are estimated from statistical models.

 


Working with multiple dimensions, an example from Germany

An anonymous reader submitted this mirrored bar chart about violent acts by extremists in the 16 German states.

Germanextremists_bars

At first glance, this looks like a standard design. On a second look, you might notice what the reader discovered- the chart used two different scales, one for each side. The left side (red) depicting left-wing extremism is artificially compressed relative to the right side (blue). Not sure if this reflects the political bias of the publication - but in any case, this distortion means the only way to consume this chart is to read the numbers.

Even after fixing the scales, this design is challenging for the reader. It's unnatural to compare two years by looking first below then above. It's not simple to compare across states, and even harder to compare left- and right-wing extremism (due to mirroring).

The chart feels busy because the entire dataset is printed on it. I appreciate not including a redundant horizontal axis. (I wonder if the designer first removed the axis, then edited the scale on one side, not realizing the distortion.) Another nice touch, hidden in the legend, is the country totals.

I present two alternatives.

The first is a small-multiples "bumps chart".

Redo_junkcharts_germanextremists_sidebysidelines

Each plot presents the entire picture within a state. You can see the general level of violence, the level of left- and right-wing extremism, and their year-on-year change. States can be compared holistically.

Several German state names are rather long, so I explored a horizontal orientation. In this case, a connected dot plot may be more appropriate.

Redo_junkcharts_germanextremists_dots

The sign of a good multi-dimensional visual display is whether readers can easily learn complex relationships. Depending on the question of interest, the reader can mentally elevate parts of this chart. One can compare the set of blue arrows to the set of red arrows, or focus on just blue arrows pointing right, or red arrows pointing left, or all arrows for Berlin, etc.

 

[P.S. Anonymous reader said the original chart came from the Augsburger newspaper. This link in German contains more information.]


Cornell must remove the logs before it reopens the campus in the fall

Against all logic, Cornell announced last week it would re-open in the fall because a mathematical model under development by several faculty members and grad students predicts that a "full re-opening" would lead to 80 percent fewer infections than a scenario of full virtual instruction. That's what was reported by the media.

The model is complicated, with loads of assumptions, and the report is over 50 pages long. I will put up my notes on how they attained this counterintuitive result in the next few days. The bottom line is - and the research team would agree - it is misleading to describe the analysis as "full re-open" versus "no re-open". The so-called full re-open scenario assumes the entire community including students, faculty and staff submit to a full program of test-trace-isolate, including (mandatory) PCR diagnostic testing once every five days throughout the 16-week semester, and immediate quarantine and isolation of new positive cases, as well as those in contact with such persons, plus full compliance with this program. By contrast, it assumes students do not get tested in the online instruction scenario. In other words, the researchers expect Cornell to get done what the U.S. governments at all levels failed to do until now.

[7/8/2020: The post on the Cornell model is now up on the book blog. Here.]

The report takes us back to the good old days of best-base-worst-case analysis. There is no data for validating such predictions so they performed sensitivity analyses, defined as changing one factor at a time assuming all other factors are fixed at "nominal" (i.e. base case) values. In a large section of the report, they publish a series of charts of the following style:

Cornell_reopen_sensitivity

Each line here represents one of the best-base-worst cases (respectively, orange-blue-green). Every parameter except one is given the "nominal" value (which represents the base case). The parameter that is manpulated is shown on the horizontal axis, and for the above chart, the variable is the assumption of average number of daily contacts per person. The vertical axis shows the main outcome variable, which is the percentage of the community infected by the end of term.

This flatness of the lines in the above chart appears to say that the outcome is quite insensitive to the change in the average daily contact rate under all three scenarios - until the daily contact rises above 10 per person per day. It also appears to show that the blue line is roughly midway between the orange and the green so the percent infected is slightly less-than halved under the optimistic scenario, and a bit more than doubled under the pessimistic scenario, relative to the blue line.

Look again.

The vertical axis is presented in log scale, and only labeled at values 1% and 10%. About midway between 1 and 10 on the horizontal axis, the outcome value has already risen above 10%. Because of the log transformation, above 10%, each tick represents an increase of 10% in proportion. So, the top of the vertical axis indicates 80% of the community being infected! Nothing in the description or labeling of the vertical axis prepares the reader for this.

The report assumes a fixed value for average daily contacts of 8 (I rounded the number for discussion), which is invariable across all three scenarios. Drawing a vertical line about eight-tenths of the way towards 10 appears to signal that this baseline daily contact rate places the outcome in the relatively flat part of the curve.

Look again.

The horizontal axis too is presented in log scale. To birth one log-scale may be regarded as a misfortune; to birth two log scales looks like carelessness. 

Since there exists exactly one tick beyond 10 on the horizontal axis, the right-most value is 20. The model has been run for values of average daily contacts from 1 to 20, with unit increases. I can think of no defensible reason why such a set of numbers should be expressed in a log scale.

For the vertical axis, the outcome is a proportion, which is confined to within 0 percent and 100 percent. It's not a number that can explode.

***

Every log scale on a chart is birthed by its designer. I know of no software that automatically performs log transforms on data without the user's direction. (I write this line with trepidation wishing that I haven't planted a bad idea in some software developer's head.)

Here is what the shape of the original data looks like - without any transformation. All software (I'm using JMP here) produces something of this type:

Redo-cornellreopen-nolog

At the baseline daily contact rate value of 8, the model predicts that 3.5% of the Cornell community will get infected by the end of the semester (again, assuming strict test-trace-isolate fully implemented and complied).  Under the pessimistic scenario, the proportion jumps to 14%, which is 4 or 5 times higher than the base case. In this worst-case scenario, if the daily contact rate were about twice the assumed value (just over 16), half of the community would be infected in 16 weeks!

I actually do not understand how there could only be 8 contacts per person per day when the entire student body has returned to 100% in-person instruction. (In the report, they even say the 8 contacts could include multiple contacts with the same person.) I imagine an undergrad student in a single classroom with 50 students. This assumption says the average student in this class only comes into contact with at most 8 of those. That's one class. How about other classes? small tutorials? dining halls? dorms? extracurricular activities? sports? parties? bars?

Back to graphics. Something about the canonical chart irked the report writers so they decided to try a log scale. Here is the same chart with the vertical axis in log scale:

Redo-cornellreopen-logy

The log transform produces a visual distortion. On the right side, where the three lines are diverging rapidly, the log transform pulls them together. On the left side, where the three lines are close together, the log transform pulls them apart.

Recall that on the log scale, a straight line is exponential growth. Look at the green line (worst case). That line is approximately linear so in the pessimistic scenario, despite assuming full compliance to a strict test-trace-isolate regimen, the cases are projected to grow exponentially.

Something about that last chart still irked the report writers so they decided to birth a second log scale. Here is the chart they ultimately settled on:

Redo-cornellreopen-logylogx

As with the other axis, the effect of the log transform is to squeeze the larger values (on the right side) and spread out the smaller values (on the left side). After this cosmetic surgery, the left side looks relatively flat while the right side looks steep.

In the next version of the Cornell report, they should replace all these charts with ones using linear scales.

***

Upon discovering this graphical mischief, I wonder if the research team received a mandate that includes a desired outcome.

 

[P.S. 7/8/2020. For more on the Cornell model, see this post.]


What is the price for objectivity

I knew I had to remake this chart.

TMC_hospitalizations

The simple message of this chart is hidden behind layers of visual complexity. What the analyst wants readers to focus on (as discerned from the text on the right) is the red line, the seven-day moving average of new hospital admissions due to Covid-19 in Texas.

My eyes kept wandering away from the line. It's the sideway data labels on the columns. It's the columns that take up vastly more space than the red line. It's the sideway date labels on the horizontal axis. It's the redundant axis labels for hospitalizations when the entire data set has already been printed. It's the two hanging diamonds, for which the clues are filed away in the legend above.

Here's a version that brings out the message: after Phase 2 re-opening, the number of hospital admissions has been rising steadily.

Redo_junkcharts_texas_covidhospitaladmissions_1

Dots are used in place of columns, which push these details to the background. The line as well as periods of re-opening are directly labeled, removing the need for a legend.

Here's another visualization:

Redo_junkcharts_texas_covidhospitaladmissions_2

This chart plots the weekly average new hospital admissions, instead of the seven-day moving average. In the previous chart, the raggedness of moving average isn't transmitting any useful information to the average reader. I believe this weekly average metric is easier to grasp for many readers while retaining the general story.

***

On the original chart by TMC, the author said "the daily hospitalization trend shows an objective view of how COVID-19 impacts hospital systems." Objectivity is an impossible standard for any kind of data analysis or visualization. As seen above, the two metrics for measuring the trend in hospitalizations have pros and cons. Even if one insists on using a moving average, there are choices of averaging methods and window sizes.

Scientists are trained to believe in objectivity. It frequently disappoints when we discover that the rest of the world harbors no such notion. If you observe debates between politicians or businesspeople or social scientists, you rarely hear anyone claim one analysis is more objective - or less subjective - than another. The economist who predicts Dow to reach a new record, the business manager who argues for placing discounted products in the front not the back of the store, the sportscaster who maintains Messi is a better player than Ronaldo: do you ever hear these people describe their methods as objective?

Pursuing objectivity leads to the glorification of data dumps. The scientist proclaims disinterest in holding an opinion about the data. This is self-deception though. We clearly have opinions because when someone else  "misinterprets" the data, we express dismay. What is the point of pretending to hold no opinions when most of the world trades in opinions? By being "objective," we never shape the conversation, and forever play defense.