Continuing our review of FiveThirtyEight's election forecasting model visualization (link), I now look at their headline data visualization. (The previous posts in this series are here, and here.)

It's a set of 22 maps, each showing one election scenario, with one candidate winning. What chart form is this?

**Small multiples** may come to mind. A small-multiples chart is a grid in which every component graphic has the same form - same chart type, same color scheme, same scale, etc. The only variation from graphic to graphic is the data. The data are typically varied along a dimension of interest, for example, age groups, geographic regions, years. The following small-multiples chart, which I praised in the past (link), shows liquor consumption across the world.

Each component graphic changes according to the data specific to a country. When we scan across the grid, we draw conclusions about country-to-country variations. As with convention, there are as many graphics as there are countries in the dataset. Sometimes, the designer includes only countries that are directly relevant to the chart's topic.

***

What is the variable FiveThirtyEight chose to vary from map to map? It's the scenario used in the election forecasting model.

This choice is unconventional. The 22 scenarios is a subset of the 40,000 scenarios from the simulation - we are left wondering how those 22 are chosen.

Returning to our question: what chart form is this?

Perhaps you're reminded of the dot plot from the previous post. On that dot plot, the designer summarized the results of 40,000 scenarios using 100 dots. Since Biden is the winner in 75 percent of all scenarios, the dot plot shows 75 blue dots (and 25 red).

The map is the new dot. The 75 blue dots become 16 blue maps (rounded down) while the 25 red dots become 6 red maps.

Is it a **pictogram** of maps? If we ignore the details on the maps, and focus on the counts of colors, then yes. It's just a bit challenging because of the hole in the middle, and the atypical number of maps.

As with the dot plot, the map details are a nice touch. It connects readers with the simulation model which can feel very abstract.

Oddly, if you're someone familiar with probabilities, this presentation is quite confusing.

With 40,000 scenarios reduced to 22 maps, each map should represent 1818 scenarios. On the dot plot, each dot should represent 400 scenarios. This follows the rule for creating pictograms. Each object in a pictogram - dot, map, figurine, etc. - should encode an equal amount of the data. For the 538 visualization, is it true that each of the six red maps represents 1818 scenarios? This may be the case but not likely.

Recall the dot plot where the most extreme red dot shows a scenario in which Trump wins 376 out of 538 electoral votes (margin = 214). Each dot should represent 400 scenarios. The visualization implies that there are 400 scenarios similar to the one on display. For the grid of maps, the following red map from the top left corner should, in theory, represent 1,818 similar scenarios. Could be, but I'm not sure.

Mathematically, each of the depicted scenario, including the blowout win above, occurs with 1/40,000 chance in the simulation. However, one expects few scenarios that look like the extreme scenario, and ample scenarios that look like the median scenario.

So, the right way to read the 538 chart is to ignore the map details when reading the embedded pictogram, and then look at the small multiples of detailed maps bearing in mind that extreme scenarios are unique while median scenarios have many lookalikes.

(Come to think about it, the analogous situation in the liquor consumption chart is the relative population size of different countries. When comparing country to country, we tend to forget that the data apply to large numbers of people in populous countries, and small numbers in tiny countries.)

***

There's a small improvement that can be made to the detailed maps. As I compare one map to the next, I'm trying to pick out which states that have changed to change the vote margin. Conceptually, the number of states painted red should decrease as the winning margin decreases, and the states that shift colors should be the **toss-up states**.

So I'd draw the solid Republican (Democratic) states with a lighter shade, forming an easily identifiable bloc on all maps, while the toss-up states are shown with a heavier shade.

Here, I just added a darker shade to the states that disappear from the first red map to the second.

In yesterday's post, I reviewed one section of 538's visualization of its election forecasting model, specifically, the post focuses on the probability plot visualization.

The visualization, technically called a pdf, is a mainstay of statistical graphics. While every one of 40,000 scenarios shows up on this chart, it doesn't offer a direct answer to our topline question. What is Nate's call at this point in time? Elsewhere in their post, we learn that the 538 model currently gives Biden a 75% chance of winning, thrice that of Trump's.

In graphical terms, the area to the right of the 270-line is three times the size of the left area (on the bottom chart). That's not apparent in the pdf representation. Addressing this, statisticians may convert the pdf into a cdf, which depicts the cumulative area as we sweep from the left to the right along the horizontal axis.

The cdf visualization rarely leaves the pages of a scientific journal because it's not easy for a novice to understand. Not least because the relevant probability is 1 minus the cumulative probability. The cdf for the bottom chart will show 25% at the 270-line while the chance of Biden winning is 1 - 25% = 75%.

The cdf presentation is also wasteful for the election scenario. No one cares about any threshold other than the 270 votes needed to win, but the standard cdf shows every possible threshold.

The second graphical concept in the 538 post (link) is an attempt to solve this problem.

If you drop all the dots to an imaginary horizontal baseline, the above dotplot looks like this:

There is a recent trend toward centering dots to produce symmetry. It's actually harder to perceive the differences in heights of the band.

The secret sauce is to put down 100 dots, with a 75-25 blue-red split that conveys the 75% chance of a Biden win. Imposing the pdf line from the other visualization, I find that the density of dots roughly mimics the probability of outcomes.

It's easier to estimate the blue vs red areas using those dots than the lines.

The dots are stuffed toys. Clicking on each dot reveals a map showing one of the 40,000 scenarios. It displays which candidate wins which state. For example, the most extreme example of a Trump win is:

Here is a scenario of a razor-tight election won by Trump:

This presentation has a weakness as well. It gives the impression that each of the dots is equally important because they are the same size. In reality, the importance of each dot is proportional to the height of the band. Since the band is generally wider near the middle, the dots near the middle are more likely scenarios than the dots shown on the two edges.

On balance, I like this visualization that is both informative and playful.

As before, what strikes me about the simulation result is the flatness of the probability surface. This feature is obscured when we summarize the result as 75% chance of a Biden victory.

As anyone who is familiar with Nate Silver's forecasting of U.S. presidential elections knows, he runs a simulation that explores the space of possible scenarios. The polls that provide a baseline forecast make certain assumptions, such as who's a likely voter. Nate's model unshackles these assumptions from the polling data, exploring how the outcomes vary as these assumptions shift.

In the most recent simulation, his computer explores 40,000 scenarios, each of which predicts a split of the electoral vote, from which the winner of the election can be determined. The model's outcome is usually summarized by a winning probability, which is just the proportion of scenarios under which one candidate wins.

This type of forecasting was responsible for the infamous meltdown in 2016 when most of these models - Nate's being an exception - issued extremely confident predictions that Hillary Clinton wins with 95% or higher probability. Essentially, the probability distribution collapses to a point. This is analogous to an extremely narrow confidence band, indicating almost zero uncertainty about the event. It was as if almost all of the 40,000 scenarios predicted Clinton to be the winner.

The 538 data team has come up with various ways of visualizing the outputs of the model (link). The entire post is worth reading. Here, I'll highlight the most scientific, and direct visual representation, which is the third display.

We start by looking at the bottom of the two charts, showing the predicted electoral votes won by Democratic challenger Joe Biden, in each of the 40,000 scenarios. Our attention is directed to the thick line that gives the relative chance of Biden's electoral-vote tally. This line is a smoothed summary of the columns in the background, which show the number of times the simulation produces each electoral-vote count.

The highlighted, right side of the chart recounts scenarios in which Biden becomes President, that is to say, he wins more than 270 electoral votes (out of 538, doh). The faded, left side represents scenarios in which Biden is defeated and Trump wins a second term.

The reason I focused on the bottom chart is that the top chart is merely a mirror image of this one. Just reflect the bottom chart around the vertical axis of 270 electoral votes, change the color scheme to red, and swap annotations related to Trump and Biden, and you get the other chart. This is because the narrative has excluded third-party and write-in candidates, leaving us with a zero-sum situation.

Alternatively, one can jam both charts into one, while supplying extra labels, like this:

I prefer the denser single chart because my mind wanders away searching for extra meaning when chart elements are mirrored.

One advantage of the mirrored presentation is that the probability profiles of the potential Trump or Biden wins can be directly compared. We learn that Trump's winning margins are smaller, rarely above 150, and never above 250.

This comparison is made easier by flipping left side of the chart onto the right side:

Those are three different visualizations using the same chart form. I'd have to run a poll to figure out which is the best. What's your opinion?

Bloomberg Businessweek has a special edition about vaccines, and I found this chart on the print edition:

The chart's got a lot of white space. Its structure is a series of simple "treemaps," one for each type of vaccine. Though simple, such a chart burns a few brain cells.

Here, I've extracted the largest block, which corresponds to vaccines that work with the virus's RNA/DNA. I applied a self-sufficiency test, removing the data from the boxes.

What proportion of these projects have moved from pre-clinical to Phase 1? To answer this question, we have to understand the relative areas of boxes, since that's how the data are encoded. How many yellow boxes can fit into the gray box?

It's not intuitive. We'd need a ruler to do this task properly.

Then, we learn that the gray box is exactly 8 times the size of the yellow box (72 projects are pre-clinical while 9 are in Phase I). We can cram eight yellows into the gray box. Imagine doing that, and it's pretty clear the visual elements fail to convey the meaning of the data.

**Self-sufficiency** is the idea that a data graphic should not rely on printed data to convey its meaning; the visual elements of a data graphic should bear much of the burden. Otherwise, use a data table. To test for self-sufficiency, cover up the printed data and see if the chart still works.

***

A key decision for the designer is the relative importance of (a) the number of projects reaching Phase III, versus (b) the number of projects utilizing specific vaccine strategies.

This next chart emphasizes the clinical phases:

Contrast this with the version shown in the online edition of Bloomberg (link), which emphasizes the vaccine strategies.

If any reader can figure out the logic of the ordering of the vaccine strategies, please leave a comment below.