Gaining precision by deleting data
What is this "stacked range chart"?

The canonical U.S. political map

The previous posts feature the canonical political map of U.S. presidential elections, the vote margin shift map. The following realization of it, made by NBC News (link), drills down to the counties with the largest Asian-American populations:

Nbcnews_votemarginshiftmap_asians

How does this map form encode the data?

***

The key visual element is the arrow. The arrow has a color, a length and also an angle.

The color scheme is fixed to the canonical red-blue palette attached to America's two major political parties.

The angle of the arrow, as seen in the legend, carries no data at all. All arrows are slanted at the same angles. Not quite; the political party is partially encoded into the angle, as the red arrows slant one way while the blue arrows always slant the other way. The degree of slant is constant everywhere, though.

So only the lengths of the arrows contain the vote margin gain/loss data. The legend shows arrows of two different lengths but vote margins have not been reduced to two values. As evident on the map, the arrow lengths are continuous.

The designer has a choice when it comes to assigning colors to these arrows. The colors found on the map above depicts the direction of the vote margin shift so red arrows indicate counties in which the Republicans gained share. (The same color encoding is used by the New York Times.)

Note that a blue county could have shifted to the right, and therefore appear as a red arrow even though the county voted for Kamala Harris in 2024. Alternatively, the designer could have encoded the 2024 vote margin in the arrow color. While this adds more data to the map, it could wreak havoc with our perception as now all four combinations are possible: red, pointing left; red, pointing right; blue, pointing left; and blue, pointing right.

***

To sum this all up, the whole map is built from a single data series, the vote margin shift expressed as a positive or negative percentage, in which a positive number indicates Republicans increased the margin. The magnitude of this data is encoded in the arrow length, ignoring the sign. The sign (direction) of the data, a binary value, is encoded into the arrow color as well as the direction of the arrow.

In other words, it's a proportional symbol map in which each geographical region is represented by a symbol (typically a bubble), and a single numeric measure is encoded in the size of the symbol. In many situations, the symbol's color is used to display a classification of the geographical regions.

The symbol used for the "wind map" are these slanted arrows. The following map, pulled from CNN (link), makes it clear that the arrows play only the role of a metaphor, the left-right axis of political attitude.

Cnn_votemarginshiftmap_triangles

This map is essentially the same as the "wind map" used by the New York Times and NBC News, the key difference being that instead of arrows, the symbol is a triangle. On proportional triangle maps, the data is usually encoded in the height of the triangles, so that the triangles can be interpreted as "hills". Thus, the arrow length in the wind map is the hill height in the triangle map. The only thing left behind is the left-right metaphor.

The CNN map added a detail. Some of the counties have a dark gray color. These are "flipped". A flip is defined as a change in "sign" of the vote margin from 2020 to 2024. A flipped county can exhibit either a blue or a red hill. The direction of the flip is actually constrained by the hill color. If it's a red hill, we know there is a shift towards Republicans, and in addition, the county flipped, it must be that Democrats won that county in 2020, and it flipped to Republicans. Similiar, if a blue hill sits on a dark gray county, then the county must have gone for Republicans in 2020 and flipped to Democrats in 2024.

 

Comments

Feed You can follow this conversation by subscribing to the comment feed for this post.

Verify your Comment

Previewing your Comment

This is only a preview. Your comment has not yet been posted.

Working...
Your comment could not be posted. Error type:
Your comment has been saved. Comments are moderated and will not appear until approved by the author. Post another comment

The letters and numbers you entered did not match the image. Please try again.

As a final step before posting your comment, enter the letters and numbers you see in the image below. This prevents automated programs from posting comments.

Having trouble reading this image? View an alternate.

Working...

Post a comment

Comments are moderated, and will not appear until the author has approved them.

Your Information

(Name is required. Email address will not be displayed with the comment.)