« August 2022 | Main | October 2022 »

Where have the graduates gone?

Someone submitted this chart on Twitter as an example of good dataviz.

Washingtonpost_aftercollege

The chart shows the surprising leverage colleges have on where students live after graduation.

The primary virtue of this chart is conservation of space. If our main line of inquiry is the destination states of college graduations - by state, then it's hard to beat this chart's efficiency at delivering this information. For each state, it's easy to see what proportion of graduates leave the state after graduation, and then within those who leave, the reader can learn which are the most popular destination states, and their relative importance.

The colors link the most popular destination states (e.g. Texas in orange) but they are not enough because the designer uses state labels also. A next set of states are labeled without being differentiated by color. In particular, New York and Massachusetts share shades of blue, which also is the dominant color on the left side.

***

The following is a draft of a concept I have in my head.

Junkcharts_redo_washpost_postgraddestinations_1

I imagine this to be a tile map. The underlying data are not public so I just copied down a bunch of interesting states. This view brings out the spatial information, as we expect graduates are moving to neighboring states (or the states with big cities).

The students in the Western states are more likely to stay in their own state, and if they move, they stay in the West Coast. The graduates in the Eastern states also tend to stay nearby, except for California.

I decided to use groups of color - blue for East, green for South, red for West. Color is a powerful device, if used well. If the reader wants to know which states send graduates to New York, I'm hoping the reader will see the chart this way:

Junkcharts_redo_washpost_postgraddestinations_2

 


Modern design meets dataviz

This chart was submitted via Twitter (thanks John G.).

OptimisticEstimatingHomeValue

Perhaps the designer is inspired by this:

Royalontariomuseum

That's the Royal Ontario Museum, one of the beautiful landmarks in Toronto.

***

The chart addresses an interesting question - how much do home buyers over or under-estimate home value?  That said, gathering data to answer this question is challenging. I won't delve into this issue in this post.

Let's ask where readers are looking for data on the chart. It appears that we should use the right edge of each triangle. While the left edge of the red triangle might be useful, the left edges of the other triangles definitely would not contain data.

Note that, like modern architecture, the designer is playing with edges. None of the four right edges is properly vertical - none of the lines cuts the horizontal axis at a right angle. So the data actually reside in the imaginary vertical lines from the apexes to the horizontal baseline.

Where is the horizontal baseline? It's not where it is drawn either. The last number in the series is a negative number and so the real baseline is in the middle of the plot area, where the 0% value is.

The following chart shows (left side) the misleading signals sent to readers and (right side) the proper way to consume the data.

Redo_rockethomes_priceprojection

The degree of distortion is quite extreme. Only the fourth value is somewhat accurate, albeit by accident.

The design does not merely perturb the chart; it causes a severe adverse reaction.

 

P.S. [9/19/2022] Added submitter name.

 

 

 


Trying too hard

Today, I return to the life expectancy graphic that Antonio submitted. In a previous post, I looked at the bumps chart. The centerpiece of that graphic is the following complicated bar chart.

Aburto_covid_lifeexpectancy

Let's start with the dual axes. On the left, age, and on the right, year of birth. I actually like this type of dual axes. The two axes present two versions of the same scale so the dual axes exist without distortion. It just allows the reader to pick which scale they want to use.

It baffles me that the range of each bar runs from 2.5 years to 7.5 years or 7.5 years to 2.5 years, with 5 or 10 years situated in the middle of each bar.

Reading the rest of the chart is like unentangling some balled up wires. The author has created a statistical model that attributes cause of death to male life expectancy in such a way that you can take the difference in life expectancy between two time points, and do a kind of waterfall analysis in which each cause of death either adds to or subtracts from the prior life expectancy, with the sum of these additions and substractions leading to the end-of-period life expectancy.

The model is complicated enough, and the chart doesn't make it any easier.

The bars are rooted at the zero value. The horizontal axis plots addition or substraction to life expectancy, thus zero represents no change during the period. Zero does not mean the cause of death (e.g. cancer) does not contribute to life expectancy; it just means the contribution remains the same.

The changes to life expectancy are shown in units of months. I'd prefer to see units of years because life expectancy is almost always given in years. Using years turn 2.5 months into 0.2 years which is a fraction, but it allows me to see the impact on the reported life expectancy without having to do a month-to-year conversion.

The chart highlights seven causes of death with seven different colors, plus gray for others.

What really does a number on readers is the shading, which adds another layer on top of the hues. Each color comes in one of two shading, referencing two periods of time. The unshaded bar segments concern changes between 2010 and "2019" while the shaded segments concern changes between "2019" and 2020. The two periods are chosen to highlight the impact of COVID-19 (the red-orange color), which did not exist before "2019".

Let's zoom in on one of the rows of data - the 72.5 to 77.5 age group.

Screen Shot 2022-09-14 at 1.06.59 PM

COVID-19 (red-orange) has a negative impact on life expectancy and that's the easy one to see. That's because COVID-19's contribution as a cause of death is exactly zero prior to "2019". Thus, the change in life expectancy is a change from zero. This is not how we can interpret any of the other colors.

Next, we look at cancer (blue). Since this bar segment sits on the right side of zero, cancer has contributed positively to change in life expectancy between 2010 and 2020. Practically, that means proportionally fewer people have died from cancer. Since the lengths of these bar segments correspond to the relative value, not absolute value, of life expectancy, longer bars do not necessarily indicate more numerous deaths.

Now the blue segment is actually divided into two parts, the shaded and not shaded. The not-shaded part is for the period "2019" to 2020 in the first year of the COVID-19 pandemic. The shaded part is for the period 2010 to "2019". It is a much wider span but it also contains 9 years of changes versus "1 year" so it's hard to tell if the single-year change is significantly different from the average single-year change of the past 9 years. (I'm using these quotes because I don't know whether they split the year 2019 in the middle since COVID-19 didn't show up till the end of that year.)

Next, we look at the yellow-brown color correponding to CVD. The key feature is that this block is split into two parts, one positive, one negative. Prior to "2019", CVD has been contributing positively to life expectancy changes while after "2019", it has contributed negatively. This observation raises some questions: why would CVD behave differently with the arrival of the pandemic? Are there data problems?

***

A small multiples design - splitting the period into two charts - may help here. To make those two charts comparable, I'd suggest annualizing the data so that the 9-year numbers represent the average annual values instead of the cumulative values.

 

 


Here's a radar chart that works, sort of

In the same Reuters article that featured the speedometer chart which I discussed in this blog post (link), the author also deployed a small multiples of radar charts.

These radar charts are supposed to illustrate the article's theme that "European countries are racing to fill natural gas storage sites ahead of winter."

Here's the aggregate chart that shows all countries:

Reuters_gastorage_radar_details

In general, I am not a fan of radar charts. When I first looked at this chart, I also disliked it. But keep reading because I eventually decided that this usage is an exception. One just needs to figure out how to read it.

One reason why I dislike radar charts is that they always come with a lot of non-data-ink baggage. We notice that the months of the year are plotted in a circle starting at the top. They marked off the start of the war on Feb 24, 2022 in red. Then, they place the dotted circle, which represents the 80% target gas storage amount.

The trick is to avoid interpreting the areas, or the shapes of the blue and gray patches. I know, they look cool and grab our attention but in the context of conveying data, they are meaningless.

Redo_reuters_eugasradarall_1Instead of areas, focus on the boundaries of those patches. Don't follow one boundary around the circle. Pick a point in time, corresponding to a line between the center of the circle and the outermost circle, and look at the gap between the two lines. In the diagram shown right, I marked off the two relevant points on the day of the start of the war.

From this, we observe that across Europe, the gas storage was far less than the 80% target (recently set).

By comparing two other points (the blue and gray boundaries), we see that during February, Redo_reuters_eugasradarall_2gas storage is at a seasonal low, and in 2022, it is on the low side of the 5-year average. 

However, the visual does not match well with the theme of the article! While the gap between the blue and gray boundaries decreased since the start of the war, the blue boundary does not exceed the historical average, and does not get close to 80% until August, a month in which gas storage reaches 80% in a typical year.

This is example of a chart in which there is a misalignment between the Q and the V corners of the Trifecta Checkup (link).

_trifectacheckup_image

The question/message is that Europeans are reacting to the war by increasing their gas storage beyond normal. The visual actually says that they are increasing the gas storage as per normal.

***

As I noted before, when read in a particular way, these radar charts serve their purpose, which is more than can be said for most radar charts.

The designer made several wise choices:

Instead of drawing one ring for each year of data, the designer averaged the past 5 years and turned that into one single ring (patch). You can imagine what this radar chart would look like if the prior data were not averaged: hoola hoop mania!

Marawa-bgt

Simplifying the data in this way also makes the small multiples work. The designer uses the aggregate chart as a legend/how to read this. And in a further section below, the designer plots individual countries, without the non-data-ink baggage:

Reuters_gastorage_mosttofill

Thanks againto longtime reader Antonio R. who submitted this chart.

Happy Labor Day weekend for those in the U.S.!