## Two uses of bumps charts

##### Aug 30, 2022

Long-time reader Antonio R. submitted the following chart, which illustrates analysis from a preprint on the effect of Covid-19 on life expectancy in the U.S. (link)

For this post, I want to discuss the bumps chart on the lower right corner. Bumps charts are great at showing change over time. In this case, the authors are comparing two periods "2010-2019" and "2019-2020". By glancing at the chart, one quickly divides the causes of death into three groups: (a) COVID-19 and CVD, which experienced a big decline (b) respiratory, accidents, others ("rest"), and despair, which experienced increases, and (c) cancer and infectious, which remained the same.

And yet, something doesn't seem right.

What isn't clear is the measured quantity. The chart title says "months gained or lost" but it takes a moment to realize the plotted data are not number of months but ranks of the effects of the causes of deaths on life expectancy.

Observe that the distance between each cause of death is the same. Look at the first rising line (respiratory): the actual values went from 0.8 months down to 0.2.

***

While the canonical bumps chart plots ranks, the same chart form can be used to show numeric data. I prefer to use the same term for both charts. In recent years, the bumps chart showing numeric data has been called "slopegraph".

Here is a side-by-side comparison of the two charts:

The one on the left is the same as the original. The one on the right plots the number of months increased or decreased.

The choice of chart form paints very different pictures. There are four blue lines on the left, indicating a relative increase in life expectancy - these causes of death contributed more to life expectancy between the two periods. Three of the four are red lines on the right chart. Cancer was shown as a flat line on the left - because it was the highest ranked item in both periods. The right chart shows that the numeric value for cancer suffered one of the largest drops.

The left chart exaggerates small numeric changes while it condenses large numeric changes.

## Speedometer charts: love or hate

##### Aug 19, 2022

Pie chart hate is tired. In this post, I explain my speedometer hate. (Also called gauges,  dials)

Next to pie charts, speedometers are perhaps the second most beloved chart species found on business dashboards. Here is a typical example:

For this post, I found one on Reuters about natural gas in Europe. (Thanks to long-time contributor Antonio R. for the tip.)

The reason for my dislike is the inefficiency of this chart form. In classic Tufte-speak, the speedometer chart has a very poor data-to-ink ratio. The entire chart above contains just one datum (73%). Most of the ink are spilled over non-data things.

This single number has a large entourage:

- the curved axis
- ticks on the axis
- labels on the scale
- the dial
- the color segments
- the reference level "EU target"

These are not mere decorations. Taking these elements away makes it harder to understand what's on the chart.

Here is the chart without the curved axis:

Here is the chart without axis labels:

Here is the chart without ticks:

When the tick labels are present, the chart still functions.

Here is the chart without the dial:

The datum is redundantly encoded in the color segments of the "axis".

Here is the chart without the dial or the color segments:

If you find yourself stealing a peek at the chart title below, you're not alone.

All versions except one increases our cognitive load. This means the entourage is largely necessary if one encodes the single number in a speedometer chart.

The problem with the entourage is that readers may resort to reading the text rather than the chart.

***

The following is a minimalist version of the Reuters chart:

I removed the axis labels and the color segments. The number 73% is shown using the dial angle.

The next chart adds back the secondary message about the EU target, as an axis label, and uses color segments to show the 73% number.

Like pie charts, there are limited situations in which speedometer charts are acceptable. But most of the ones we see out there are just not right.

***

One acceptable situation is to illustrate percentages or proportions, which is what the EU gas chart does. Of course, in that situation, one can alo use a pie chart without shame.

For illustrating proportions, I prefer to use a full semicircle, instead of the circular sector of arbitrary angle as Reuters did. The semicircle lends itself to easy marks of 25%, 50%, 75%, etc, eliminating the need to print those tick labels.

***

One use case to avoid is numeric data.

Take the regional sales chart pulled randomly from a Web search above:

These charts are completely useless without the axis labels.

Besides, because the span of the axis isn't 0% to 100%, every tick mark must be labelled with the numeric value. That's a lot of extra ink used to display a single value!

## Another reminder that aggregate trends hide information

##### Aug 15, 2022

The last time I looked at the U.S. employment situation, it was during the pandemic. The data revealed the deep flaws of the so-called "not in labor force" classification. This classification is used to dehumanize unemployed people who are declared "not in labor force," in which case they are neither employed nor unemployed -- just not counted at all in the official unemployment (or employment) statistics.

The reason given for such a designation was that some people just have no interest in working, or even looking for a job. Now they are not merely discouraged - as there is a category of those people. In theory, these people haven't been looking for a job for so long that they are no longer visible to the bean counters at the Bureau of Labor Statistics.

What happened when the pandemic precipitated a shutdown in many major cities across America? The number of "not in labor force" shot up instantly, literally within a few weeks. That makes a mockery of the reason for such a designation. See this post for more.

***

The data we saw last time was up to April, 2020. That's more than two years old.

So I have updated the charts to show what has happened in the last couple of years.

Here is the overall picture.

In this new version, I centered the chart at the 1990 data. The chart features two key drivers of the headline unemployment rate - the proportion of people designated "invisible", and the proportion of those who are considered "employed" who are "part-time" workers.

The last two recessions have caused structural changes to the labor market. From 1990 to late 2000s, which included the dot-com bust, these two metrics circulated within a small area of the chart. The Great Recession of late 2000s led to a huge jump in the proportion called "invisible". It also pushed the proportion of part-timers to all0time highs. The proportion of part-timers has fallen although it is hard to interpret from this chart alone - because if the newly invisible were previously part-time employed, then the same cause can be responsible for either trend.

Readers of Numbersense (link) might be reminded of a trick used by school deans to pump up their US News rankings. Some schools accept lots of transfer students. This subpopulation is invisible to the US News statisticians since they do not factor into the rankings. The recent scandal at Columbia University also involves reclassifying students (see this post).

Zooming in on the last two years. It appears that the pandemic-related unemployment situation has reversed.

***

Let's split the data by gender.

American men have been stuck in a negative spiral since the 1990s. With each recession, a higher proportion of men are designated BLS invisibles.

In the grid system set up in this scatter plot, the top right corner is the worse of all worlds - the work force has shrunken and there are more part-timers among those counted as employed. The U.S. men are not exiting this quadrant any time soon.

***

If we compare 1990 with 2022, the story is not bad. The female work force is gradually reaching the same scale as in 1990 while the proportion of part-time workers have declined.

However, celebrating the above is to ignore the tremendous gains American women made in the 1990s and 2000s. In 1990, only 58% of women are considered part of the work force - the other 42% are not working but they are not counted as unemployed. By 2000, the female work force has expanded to include about 60% with similar proportions counted as part-time employed as in 1990. That's great news.

The Great Recession of the late 2000s changed that picture. Just like men, many women became invisible to BLS. The invisible proportion reached 44% in 2015 and have not returned to anywhere near the 2000 level. Fewer women are counted as part-time employed; as I said above, it's hard to tell whether this is because the women exiting the work force previously worked part-time.

***

The color of the dots in all charts are determined by the headline unemployment number. Blue represents low unemployment. During the 1990-2022 period, there are three moments in which unemployment is reported as 4 percent or lower. These charts are intended to show that an aggregate statistic hides a lot of information. The three times at which unemployment rate reached historic lows represent three very different situations, if one were to consider the sizes of the work force and the number of part-time workers.

P.S. [8-15-2022] Some more background about the visualization can be found in prior posts on the blog: here is the introduction, and here's one that breaks it down by race. Chapter 6 of Numbersense (link) gets into the details of how unemployment rate is computed, and the implications of the choices BLS made.

P.S. [8-16-2022] Corrected the axis title on the charts (see comment below). Also, added source of data label.

## Four numbers, not as easy as it seems

##### Aug 03, 2022

Longtime reader Aleksander B. wasn't convinced by the following chart shown at the bottom of AFP's infographic about gun control.

He said:

Finally I was able to figure who got some support from NRA. But as a non-US citizen it was hard to get why 86% of republican tag points to huge red part. Then I figured out that smaller value of alpha channel codes the rest of republicans. I think this could be presented in some better way (pie charts are bad in presenting percentages of some subparts of the same pie chart - but adding a tag for 86% while skipping the tag for remaining 14% is cruel).

It's an example of how a simple chart with just four numbers is so hard to understand.

***

Here is a different view of the same data, using a similar structure as the form I chose for this recent chart on Swedish trade balance (link).