« November 2019 | Main | January 2020 »

All these charts lament the high prices charged by U.S. hospitals


A former student asked me about this chart from the New York Times that highlights much higher prices of hospital procedures in the U.S. relative to a comparison group of seven countries.

The dot plot is clearly thought through. It is not a default chart that pops out of software.

Based on its design, we surmise that the designer has the following intentions:

  1. The names of the medical procedures are printed to be read, thus the long text is placed horizontally.

  2. The actual price is not as important as the relative price, expressed as an index with the U.S. price at 100%. These reference values are printed in glaring red, unignorable.

  3. Notwithstanding the above point, the actual price is still of secondary importance, and the values are provided as a supplement to the row labels. Getting to the actual prices in the comparison countries requires further effort, and a calculator.

  4. The primary comparison is between the U.S. and the rest of the world (or the group of seven countries included). It is less important to distinguish specific countries in the comparison group, and thus the non-U.S. dots are given pastels that take some effort to differentiate.

  5. Probably due to reader feedback, the font size is subject to a minimum so that some labels are split into two lines to prevent the text from dominating the plotting region.


In the Trifecta Checkup view of the world, there is no single best design. The best design depends on the intended message and what’s in the available data.

To illustate this, I will present a few variants of the above design, and discuss how these alternative designs reflect the designer's intentions.

Note that in all my charts, I expressed the relative price in terms of discounts, which is the mirror image of premiums. Instead of saying Country A's price is 80% of the U.S. price, I prefer to say Country A's price is a 20% saving (or discount) off the U.S. price.

First up is the following chart that emphasizes countries instead of hospital procedures:


This chart encourages readers to draw conclusions such as "Hospital prices are 60-80 percent cheaper in Holland relative to the U.S." But it is more taxing to compare the cost of a specific procedure across countries.

The indexing strategy already creates a barrier to understanding relative costs of a specific procedure. For example, the value for angioplasty in Australia is about 55% and in Switzerland, about 75%. The difference 75%-55% is meaningless because both numbers are relative savings from the U.S. baseline. Comparing Australia and Switzerland requires a ratio (0.75/0.55 = 1.36): Australia's prices are 36% above Swiss prices, or alternatively, Swiss prices are a 64% 26% discount off Australia's prices.

The following design takes it even further, excluding details of individual procedures:


For some readers, less is more. It’s even easier to get a rough estimate of how much cheaper prices are in the comparison countries, for now, except for two “outliers”, the chart does not display individual values.

The widths of these bars reveal that in some countries, the amount of savings depends on the specific procedures.

The bar design releases the designer from a horizontal orientation. The country labels are shorter and can be placed at the bottom in a vertical design:


It's not that one design is obviously superior to the others. Each version does some things better. A good designer recognizes the strengths and weaknesses of each design, and selects one to fulfil his/her intentions.


P.S. [1/3/20] Corrected a computation, explained in Ken's comment.

Conceptualizing a chart using Trifecta: a practical example

In response to the reader who left a comment asking for ideas for improving the "marginal abatements chart" that was discussed here, I thought it might be helpful to lay out the process I go through when conceptualizing a chart. (Just a reminder, here is the chart we're dealing with.)


First, I'm very concerned about the long program names. I see their proper placement in a horizontal orientation as a hard constraint on the design. I'd reject every design that displays the text vertically, at an angle, or hides it behind some hover effect, or abbreviates or abridges the text.

Second, I strongly suggest re-thinking the "cost-effectiveness" metric on the vertical axis. Flipping the sign of this metric makes a return-on-investment-type metric, which is much more intuitive. Just to reiterate a prior point, it feels odd to be selecting more negative projects before more positive projects.

Third, I'd like to decide what metrics to place on the two axes. There are three main possibilities: a) benefits (that is, the average annual emissions abatement shown on the horizontal axis currently), b) costs, and c) some function that ties together costs and benefits (currently, this design uses cost per unit benefit, and calls it cost effectivness but there are a variety of similar metrics that can be defined).

For each of these metrics, there is a secondary choice. I can use the by-project value or the cumulative value. The cumulative value is dependent on a selection order, in this case, determined by the criterion of selecting from the most cost-effective program to the least (regardless of project size or any other criteria).

This is where I'd bring in the Trifecta Checkup framework (see here for a guide).

The decision of which metrics to use on the axes means I'm operating in the "D" corner. But this decision must be made with respect to the "Q" corner, thus the green arrow between the two. Which two metrics are the most relevant depends on what we want the chart to accomplish. That in turn depends on the audience and what specific question we are addressing for them.

Fourth, if the purpose of the chart is exploratory - that is to say, we use it to guide decision-makers in choosing a subset of programs, then I would want to introduce an element of interactivity. Imagine an interface that allows the user to move programs in and out of the chart, while the chart updates itself to compute the total costs and total benefits.

This last point ties together the entire Trifacta Checkup framework (link). The Question being exploratory in nature suggests a certain way of organizing and analyzing the Data as well as a Visual form that facilitates interacting with the information.



Revisiting global car sales

We looked at the following chart in the previous blog. The data concern the growth rates of car sales in different regions of the world over time.

Cnbc zh global car sales

Here is a different visualization of the same data.


Well, it's not quite the same data. I divided the global average growth rate by four to yield an approximation of the true global average. (The reason for this is explained in the other day's post.)

The chart emphasizes how each region was helping or hurting the global growth. It also features the trend in growth within each region.


This Excel chart looks standard but gets everything wrong

The following CNBC chart (link) shows the trend of global car sales by region (or so we think).

Cnbc zh global car sales

This type of chart is quite common in finance/business circles, and has the fingerprint of Excel. After examining it, I nominate it for the Hall of Shame.


The chart has three major components vying for our attention: (1) the stacked columns, (2) the yellow line, and (3) the big red dashed arrow.

The easiest to interpret is the yellow line, which is labeled "Total" in the legend. It displays the annual growth rate of car sales around the globe. The data consist of annual percentage changes in car sales, so the slope of the yellow line represents a change of change, which is not particularly useful.

The big red arrow is making the point that the projected decline in global car sales in 2019 will return the world to the slowdown of 2008-9 after almost a decade of growth.

The stacked columns appear to provide a breakdown of the global growth rate by region. Looked at carefully, you'll soon learn that the visual form has hopelessly mangled the data.


What is the growth rate for Chinese car sales in 2006? Is it 2.5%, the top edge of China's part of the column? Between 1.5% and 2.5%, the extant of China's section? The answer is neither. Because of the stacking, China's growth rate is actually the height of the relevant section, that is to say, 1 percent. So the labels on the vertical axis are not directly useful to learning regional growth rates for most sections of the chart.

Can we read the vertical axis as global growth rate? That's not proper either. The different markets are not equal in size so growth rates cannot be aggregated by simple summing - they must be weighted by relative size.

The negative growth rates present another problem. Even if we agree to sum growth rates ignoring relative market sizes, we still can't get directly to the global growth rate. We would have to take the total of the positive rates and subtract the total of the negative rates.  


At this point, you may begin to question everything you thought you knew about this chart. Remember the yellow line, which we thought measures the global growth rate. Take a look at the 2006 column again.

The global growth rate is depicted as 2 percent. And yet every region experienced growth rates below 2 percent! No matter how you aggregate the regions, it's not possible for the world average to be larger than the value of each region.

For 2006, the regional growth rates are: China, 1%; Rest of the World, 1%; Western Europe, 0.1%; United States, -0.25%. A simple sum of those four rates yields 2%, which is shown on the yellow line.

But this number must be divided by four. If we give the four regions equal weight, each is worth a quarter of the total. So the overall average is the sum of each growth rate weighted by 1/4, which is 0.5%. [In reality, the weights of each region should be scaled to reflect its market size.]


tldr; The stacked column chart with a line overlay not only fails to communicate the contents of the car sales data but it also leads to misinterpretation.

I discussed several serious problems of this chart form: 

  • stacking the columns make it hard to learn the regional data

  • the trend by region takes a super effort to decipher

  • column stacking promotes reading meaning into the height of the column but the total height is meaningless (because of the negative section) while the net height (positive minus negative) also misleads due to presumptive equal weighting

  • the yellow line shows the sum of the regional data, which is four times the global growth rate that it purports to represent



PS. [12/4/2019: New post up with a different visualization.]