« July 2019 | Main | September 2019 »

Water stress served two ways

Via Alberto Cairo (whose new book How Charts Lie can be pre-ordered!), I found the Water Stress data visualization by the Washington Post. (link)

The main interest here is how they visualized the different levels of water stress across the U.S. Water stress is some metric defined by the Water Resources Institute that, to my mind, measures the demand versus supply of water. The higher the water stress, the higher the risk of experiencing droughts.

There are two ways in which the water stress data are shown: the first is a map, and the second is a bubble plot.

Wp_waterstress

This project provides a great setting to compare and contrast these chart forms.

How Data are Coded

In a map, the data are usually coded as colors. Sometimes, additional details can be coded as shades, or moire patterns within the colors. But the map form locks down a number of useful dimensions - including x and y location, size and shape. The outline map reserves all these dimensions, rendering them unavailable to encode data.

By contrast, the bubble plot admits a good number of dimensions. The key ones are the x- and y- location. Then, you can also encode data in the size of the dots, the shape, and the color of the dots.

In our map example, the colors encode the water stress level, and a moire pattern encodes "arid areas". For the scatter plot, x = daily water use, y = water stress level, grouped by magnitude, color = water stress level, size = population. (Shape is constant.)

Spatial Correlation

The map is far superior in displaying spatial correlation. It's visually obvious that the southwestern states experience higher stress levels.

This spatial knowledge is relinquished when using a bubble plot. The designer relies on the knowledge of the U.S. map in the head of the readers. It is possible to code this into one of the available dimensions, e.g. one could make x = U.S. regions, but another variable is sacrificed.

Non-contiguous Spatial Patterns

When spatial patterns are contiguous, the map functions well. Sometimes, spatial patterns are disjoint. In that case, the bubble plot, which de-emphasizes the physcial locations, can be superior. In our example, the vertical axis divides the states into five groups based on their water stress levels. Try figuring out which states are "medium to high" water stress from the map, and you'll see the difference.

Finer Geographies

The map handles finer geographical units like counties and precincts better. It's completely natural.

In the bubble plot, shifting to finer units causes the number of dots to explode. This clutters up the chart. Besides, while most (we hope) Americans know the 50 states, most of us can't recite counties or precincts. Thus, the designer can't rely on knowledge in our heads. It would be impossible to learn spatial patterns from such a chart.

***

The key, as always, is to nail down your message, then select the right chart form.

 

 


Women workers taken for a loop or four

I was drawn to the following chart in Business Insider because of the calendar metaphor. (The accompanying article is here.)

Businessinsider_payday

Sometimes, the calendar helps readers grasp concepts faster but I'm afraid the usage here slows us down.

The underlying data consist of just four numbers: the wage gaps between race and gender in the U.S., considered simply from an aggregate median personal income perspective. The analyst adopts the median annual salary of a white male worker as a baseline. Then, s/he imputes the number of extra days that others must work to attain the same level of income. For example, the median Asian female worker must work 64 extra days (at her daily salary level) to match the white guy's annual pay. Meanwhile, Hispanic female workers must work 324 days extra.

There are a host of reasons why the calendar metaphor backfired.

Firstly, it draws attention to an uncomfortable detail of the analysis - which papers over the fact that weekends or public holidays are counted as workdays. The coloring of the boxes compounds this issue. (And the designer also got confused and slipped up when applying the purple color for Hispanic women.)

Secondly, the calendar focuses on Year 2 while Year 1 lurks in the background - white men have to work to get that income (roughly $46,000 in 2017 according to the Census Bureau).

Thirdly, the calendar view exposes another sore point around the underlying analysis. In reality, the white male workers are continuing to earn wages during Year 2.

The realism of the calendar clashes with the hypothetical nature of the analysis.

***

One can just use a bar chart, comparing the number of extra days needed. The calendar design can be considered a set of overlapping bars, wrapped around the shape of a calendar.

The staid bars do not bring to life the extra toil - the message is that these women have to work harder to get the same amount of pay. This led me to a different metaphor - the white men got to the destination in a straight line but the women must go around loops (extra days) before reaching the same endpoint.

Redo_businessinsider_racegenderpaygap

While the above is a rough sketch, I made sure that the total length of the lines including the loops roughly matches the total number of days the women needed to work to earn $46,000.

***

The above discussion focuses solely on the V(isual) corner of the Trifecta Checkup, but this data visualization is also interesting from the D(ata) perspective. Statisticians won't like such a simple analysis that ignores, among other things, the different mix of jobs and industries underlying these aggregate pay figures.

Now go to my other post on the sister (book) blog for a discussion of the underlying analysis.

 

 


This Wimbledon beauty will be ageless

Ft_wimbledonage


This Financial Times chart paints the picture of the emerging trend in Wimbledon men’s tennis: the average age of players has been rising, and hits 30 years old for the first time ever in 2019.

The chart works brilliantly. Let's look at the design decisions that contributed to its success.

The chart contains a good amount of data and the presentation is carefully layered, with the layers nicely tied to some visual cues.

Readers are drawn immediately to the average line, which conveys the key statistical finding. The blue dot  reinforces the key message, aided by the dotted line drawn at 30 years old. The single data label that shows a number also highlights the message.

Next, readers may notice the large font that is applied to selected players. This device draws attention to the human stories behind the dry data. Knowledgable fans may recall fondly when Borg, Becker and Chang burst onto the scene as teenagers.

 

Then, readers may pick up on the ticker-tape data that display the spread of ages of Wimbledon players in any given year. There is some shading involved, not clearly explained, but we surmise that it illustrates the range of ages of most of the contestants. In a sense, the range of probable ages and the average age tell the same story. The current trend of rising ages began around 2005.

 

Finally, a key data processing decision is disclosed in chart header and sub-header. The chart only plots the players who reached the fourth round (16). Like most decisions involved in data analysis, this choice has both desirable and undesirable effects. I like it because it thins out the data. The chart would have appeared more cluttered otherwise, in a negative way.

The removal of players eliminated in the early rounds limits the conclusion that one can draw from the chart. We are tempted to generalize the finding, saying that the average men’s player has increased in age – that was what I said in the first paragraph. Thinking about that for a second, I am not so sure the general statement is valid.

The overall field might have gone younger or not grown older, even as the older players assert their presence in the tournament. (This article provides side evidence that the conjecture might be true: the author looked at the average age of players in the top 100 ATP ranking versus top 1000, and learned that the average age of the top 1000 has barely shifted while the top 100 players have definitely grown older.)

So kudos to these reporters for writing a careful headline that stays true to the analysis.

I also found this video at FT that discussed the chart.

***

This chart about Wimbledon players hits the Trifecta. It has an interesting – to some, surprising – message (Q). It demonstrates thoughtful processing and analysis of the data (D). And the visual design fits well with its intended message (V). (For a comprehensive guide to the Trifecta Checkup, see here.)


Where are the Democratic donors?

I like Alberto's discussion of the attractive maps about donors to Democratic presidential candidates, produced by the New York Times (direct link).

Here is the headline map:

Nyt_demdonormaps

The message is clear: Bernie Sanders is the only candidate with nation-wide appeal. The breadth of his coverage is breath-taking. (I agree with Alberto's critique about the lack of a color scale. It's impossible to know if the counts are trivial or not.)

Bernie's coverage is so broad that his numbers overwhelm those of all other candidates except in their home bases (e.g. O'Rourke in Texas).

A remedy to this is to look at the data after removing Bernie's numbers.

Nyt_demdonormap_2

 

This pair of maps reminds me of the Sri Lanka religions map that I revisualized in this post.

Redo_srilankareligiondistricts_v2

The first two maps divide the districts into those in which one religion dominates and those in which multiple religions share the limelight. The third map then shows the second-rank religion in the mixed-religions districts.

The second map in the NYT's donor map series plots the second-rank candidate in all the precincts that Bernie Sanders lead. It's like the designer pulled off the top layer (blue: Bernie) to reveal what's underneath.

Because all of Bernie's data are removed, O'Rourke is still dominating Texas, Buttigieg in Indiana, etc. An alternative is to pull off the top layer in those pockets as well. Then, it's likely to see Bernie showing up in those areas.

The other startling observation is how small Joe Biden's presence is on these maps. This is likely because Biden relies primarily on big donors.

See here for the entire series of donor maps. See here for past discussion of New York Times's graphics.


Too much of a good thing

Several of us discussed this data visualization over twitter last week. The dataviz by Aero Data Lab is called “A Bird’s Eye View of Pharmaceutical Research and Development”. There is a separate discussion on STAT News.

Here is the top section of the chart:

Aerodatalab_research_top

We faced a number of hurdles in understanding this chart as there is so much going on. The size of the shapes is perhaps the first thing readers notice, followed by where the shapes are located along the horizontal (time) axis. After that, readers may see the color of the shapes, and finally, the different shapes (circles, triangles,...).

It would help to have a legend explaining the sizes, shapes and colors. These were explained within the text. The size encodes the number of test subjects in the clinical trials. The color encodes pharmaceutical companies, of which the graphic focuses on 10 major ones. Circles represent completed trials, crosses inside circles represent terminated trials, triangles represent trials that are still active and recruiting, and squares for other statuses.

The vertical axis presents another challenge. It shows the disease conditions being investigated. As a lay-person, I cannot comprehend the logic of the order. With over 800 conditions, it became impossible to find a particular condition. The search function on my browser skipped over the entire graphic. I believe the order is based on some established taxonomy.

***

In creating the alternative shown below, I stayed close to the original intent of the dataviz, retaining all the dimensions of the dataset. Instead of the fancy dot plot, I used an enhanced data table. The encoding methods reflect what I’d like my readers to notice first. The color shading reflects the size of each clinical trial. The pharmaceutical companies are represented by their first initials. The status of the trial is shown by a dot, a cross or a square.

Here is a sketch of this concept showing just the top 10 rows.

Redo_aero_pharmard

Certain conditions attracted much more investment. Certain pharmas are placing bets on cures for certain conditions. For example, Novartis is heavily into research on Meningnitis, meningococcal while GSK has spent quite a bit on researching "bacterial infections."