Visualizing the Thai cave rescue operation
Education deserts: places without schools still serve pies and story time

Environmental science can use better graphics

Mike A. pointed me to two animated maps made by Caltech researchers published in LiveScience (here).

The first map animation shows the rise and fall of water levels in a part of California over time. It's an impressive feat of stitching together satellite images. Click here to play the video.

Caltech_groundwater_map1

The animation grabs your attention. I'm not convinced by the right side of the color scale in which the white comes after the red. I'd want the white in the middle then the yellow and finally the red.

In order to understand this map and the other map in the article, the reader has to bring a lot of domain knowledge. This visualization isn't easy to decipher for a layperson.

Here I put the two animations side by side:

Caltech_groundwater_side

The area being depicted is the same. One map shows "ground deformation" while the other shows "subsidence". Are they the same? What's the connection between the two concepts (if any)?  On a further look, one notices that the time window for the two charts differ: the right map is clearly labeled 1995 to 2003 but there is no corresponding label on the left map. To find the time window of the left map, the reader must inspect the little graph on the top right (1996 to 2000).

This means the time window of the left map is a subset of the time window of the right map. The left map shows a sinusoidal curve that moves up and down rhythmically as the ground shifts. How should I interpret the right map? The periodicity is no longer there despite this map illustrating a longer time window. The scale on the right map is twice the magnitude of the left map. Maybe on average the ground level is collapsing? If that were true, shouldn't the sinusoidal curve drift downward over time?

Caltech_groundwater_sineThe chart on the top right of the left map is a bit ugly. The year labels are given in decimals e.g. 1997.5. In R, this can be fixed by customizing the axis labels.

I also wonder how this curve is related to the map it accompanies. The curve looks like a model - perfect oscillations of a fixed period and amplitude. But one suppose the amount of fluctuation should vary by location, based on geographical features and human activities.

The author of the article points to both natural and human impacts on the ground level. Humans affect this by water usage and also by management policies dictated by law. It would be very helpful to have a map that sheds light on the causes of the movements.

Comments

Feed You can follow this conversation by subscribing to the comment feed for this post.

Berry

The color scale with white after red mimics geography maps, where this looks quite natural (white being associated with mountain peak snow). It's a common color scale in environmental sciences. In R, it's available in terrain.colors().

"Maybe on average the ground level is collapsing?"
In the long term yes, and then it's called subsidence. I think that's what the second map displays.

"shouldn't the sinusoidal curve [in the first map] drift downward over time?"
Yes. And it shouldn't be that smooth in the first place, as you already pointed out.

The comments to this entry are closed.