People flooded this chart presented without comment with lots of comments

The recent election in Italy has resulted in some dubious visual analytics. A reader sent me this Excel chart:

Italy_elections_RDC-M5S

In brief, an Italian politician (trained as a PhD economist) used the graph above to make a point that support of the populist Five Star party (M5S) is highly correlated with poverty - the number of people on RDC (basic income). "Senza commento" - no comment needed.

Except a lot of people noticed the idiocy of the chart, and ridiculed it.

The chart appeals to those readers who don't spend time understanding what's being plotted. They notice two lines that show similar "trends" which is a signal for high correlation.

It turns out the signal in the chart isn't found in the peaks and valleys of the "trends".  It is tempting to observe that when the blue line peaks (Campania, Sicilia, Lazio, Piedmonte, Lombardia), the orange line also pops.

But look at the vertical axis. He's plotting the number of people, rather than the proportion of people. Population varies widely between Italian provinces. The five mentioned above all have over 4 million residents, while the smaller ones such as Umbira, Molise, and Basilicata have under 1 million. Thus, so long as the number of people, not the proportion, is plotted, no matter what demographic metric is highlighted, we will see peaks in the most populous provinces.

***

The other issue with this line chart is that the "peaks" are completely contrived. That's because the items on the horizontal axis do not admit a natural order. This is NOT a time-series chart, for which there is a canonical order. The horizontal axis contains a set of provinces, which can be ordered in whatever way the designer wants.

The following shows how the appearance of the lines changes as I select different metrics by which to sort the provinces:

Redo_italianelections_m5srdc_1

This is the reason why many chart purists frown on people who use connected lines with categorical data. I don't like this hard rule, as my readers know. In this case, I have to agree the line chart is not appropriate.

***

So, where is the signal on the line chart? It's in the ratio of the heights of the two values for each province.

Redo_italianelections_m5srdc_2

Here, we find something counter-intuitive. I've highlighted two of the peaks. In Sicilia, about the same number of people voted for Five Star as there are people who receive basic income. In Lombardia, more than twice the number of people voted for Five Star as there are people who receive basic income. 

Now, Lombardy is where Milan is, essentially the richest province in Italy while Sicily is one of the poorest. Could it be that Five Star actually outperformed their demographics in the richer provinces?

***

Let's approach the politician's question systematically. He's trying to say that the Five Star moement appeals especially to poorer people. He's chosen basic income as a proxy for poverty (this is like people on welfare in the U.S.). Thus, he's divided the population into two groups: those on welfare, and those not.

What he needs is the relative proportions of votes for Five Star among these two subgroups. Say, Five Star garnered 30% of the votes among people on welfare, and 15% of the votes among people not on welfare, then we have a piece of evidence that Five Star differentially appeals to people on welfare. If the vote share is the same among these two subgroups, then Five Star's appeal does not vary with welfare.

The following diagram shows the analytical framework:

Redo_italianelections_m5srdc_3

What's the problem? He doesn't have the data needed to establish his thesis. He has the total number of Five Star voters (which is the sum of the two yellow boxes) and he has the total number of people on RDC (which is the dark orange box).

Redo_italianelections_m5srdc_4

As shown above, another intervening factor is the proportion of people who voted. It is conceivable that the propensity to vote also depends on one's wealth.

So, in this case, fixing the visual will not fix the problem. Finding better data is key.


Where have the graduates gone?

Someone submitted this chart on Twitter as an example of good dataviz.

Washingtonpost_aftercollege

The chart shows the surprising leverage colleges have on where students live after graduation.

The primary virtue of this chart is conservation of space. If our main line of inquiry is the destination states of college graduations - by state, then it's hard to beat this chart's efficiency at delivering this information. For each state, it's easy to see what proportion of graduates leave the state after graduation, and then within those who leave, the reader can learn which are the most popular destination states, and their relative importance.

The colors link the most popular destination states (e.g. Texas in orange) but they are not enough because the designer uses state labels also. A next set of states are labeled without being differentiated by color. In particular, New York and Massachusetts share shades of blue, which also is the dominant color on the left side.

***

The following is a draft of a concept I have in my head.

Junkcharts_redo_washpost_postgraddestinations_1

I imagine this to be a tile map. The underlying data are not public so I just copied down a bunch of interesting states. This view brings out the spatial information, as we expect graduates are moving to neighboring states (or the states with big cities).

The students in the Western states are more likely to stay in their own state, and if they move, they stay in the West Coast. The graduates in the Eastern states also tend to stay nearby, except for California.

I decided to use groups of color - blue for East, green for South, red for West. Color is a powerful device, if used well. If the reader wants to know which states send graduates to New York, I'm hoping the reader will see the chart this way:

Junkcharts_redo_washpost_postgraddestinations_2

 


Modern design meets dataviz

This chart was submitted via Twitter (thanks John G.).

OptimisticEstimatingHomeValue

Perhaps the designer is inspired by this:

Royalontariomuseum

That's the Royal Ontario Museum, one of the beautiful landmarks in Toronto.

***

The chart addresses an interesting question - how much do home buyers over or under-estimate home value?  That said, gathering data to answer this question is challenging. I won't delve into this issue in this post.

Let's ask where readers are looking for data on the chart. It appears that we should use the right edge of each triangle. While the left edge of the red triangle might be useful, the left edges of the other triangles definitely would not contain data.

Note that, like modern architecture, the designer is playing with edges. None of the four right edges is properly vertical - none of the lines cuts the horizontal axis at a right angle. So the data actually reside in the imaginary vertical lines from the apexes to the horizontal baseline.

Where is the horizontal baseline? It's not where it is drawn either. The last number in the series is a negative number and so the real baseline is in the middle of the plot area, where the 0% value is.

The following chart shows (left side) the misleading signals sent to readers and (right side) the proper way to consume the data.

Redo_rockethomes_priceprojection

The degree of distortion is quite extreme. Only the fourth value is somewhat accurate, albeit by accident.

The design does not merely perturb the chart; it causes a severe adverse reaction.

 

P.S. [9/19/2022] Added submitter name.

 

 

 


Trying too hard

Today, I return to the life expectancy graphic that Antonio submitted. In a previous post, I looked at the bumps chart. The centerpiece of that graphic is the following complicated bar chart.

Aburto_covid_lifeexpectancy

Let's start with the dual axes. On the left, age, and on the right, year of birth. I actually like this type of dual axes. The two axes present two versions of the same scale so the dual axes exist without distortion. It just allows the reader to pick which scale they want to use.

It baffles me that the range of each bar runs from 2.5 years to 7.5 years or 7.5 years to 2.5 years, with 5 or 10 years situated in the middle of each bar.

Reading the rest of the chart is like unentangling some balled up wires. The author has created a statistical model that attributes cause of death to male life expectancy in such a way that you can take the difference in life expectancy between two time points, and do a kind of waterfall analysis in which each cause of death either adds to or subtracts from the prior life expectancy, with the sum of these additions and substractions leading to the end-of-period life expectancy.

The model is complicated enough, and the chart doesn't make it any easier.

The bars are rooted at the zero value. The horizontal axis plots addition or substraction to life expectancy, thus zero represents no change during the period. Zero does not mean the cause of death (e.g. cancer) does not contribute to life expectancy; it just means the contribution remains the same.

The changes to life expectancy are shown in units of months. I'd prefer to see units of years because life expectancy is almost always given in years. Using years turn 2.5 months into 0.2 years which is a fraction, but it allows me to see the impact on the reported life expectancy without having to do a month-to-year conversion.

The chart highlights seven causes of death with seven different colors, plus gray for others.

What really does a number on readers is the shading, which adds another layer on top of the hues. Each color comes in one of two shading, referencing two periods of time. The unshaded bar segments concern changes between 2010 and "2019" while the shaded segments concern changes between "2019" and 2020. The two periods are chosen to highlight the impact of COVID-19 (the red-orange color), which did not exist before "2019".

Let's zoom in on one of the rows of data - the 72.5 to 77.5 age group.

Screen Shot 2022-09-14 at 1.06.59 PM

COVID-19 (red-orange) has a negative impact on life expectancy and that's the easy one to see. That's because COVID-19's contribution as a cause of death is exactly zero prior to "2019". Thus, the change in life expectancy is a change from zero. This is not how we can interpret any of the other colors.

Next, we look at cancer (blue). Since this bar segment sits on the right side of zero, cancer has contributed positively to change in life expectancy between 2010 and 2020. Practically, that means proportionally fewer people have died from cancer. Since the lengths of these bar segments correspond to the relative value, not absolute value, of life expectancy, longer bars do not necessarily indicate more numerous deaths.

Now the blue segment is actually divided into two parts, the shaded and not shaded. The not-shaded part is for the period "2019" to 2020 in the first year of the COVID-19 pandemic. The shaded part is for the period 2010 to "2019". It is a much wider span but it also contains 9 years of changes versus "1 year" so it's hard to tell if the single-year change is significantly different from the average single-year change of the past 9 years. (I'm using these quotes because I don't know whether they split the year 2019 in the middle since COVID-19 didn't show up till the end of that year.)

Next, we look at the yellow-brown color correponding to CVD. The key feature is that this block is split into two parts, one positive, one negative. Prior to "2019", CVD has been contributing positively to life expectancy changes while after "2019", it has contributed negatively. This observation raises some questions: why would CVD behave differently with the arrival of the pandemic? Are there data problems?

***

A small multiples design - splitting the period into two charts - may help here. To make those two charts comparable, I'd suggest annualizing the data so that the 9-year numbers represent the average annual values instead of the cumulative values.