Locating the political center

I mentioned the September special edition of Bloomberg Businessweek on the election in this prior post. Today, I'm featuring another data visualization from the magazine.



Here are the rightmost two charts.

Bloomberg_politicalcenter_rightside Time runs from top to bottom, spanning four decades.

Each chart covers a political issue. These two charts concern abortion and marijuana.

The marijuana question (far right) has only two answers, legalize or don't legalize. The underlying data measure the proportions of people agreeing to each point of view. Roughly three-quarters of the population disagreed with legalization in 1980 while two-thirds agree with it in 2020.

Notice that there are no horizontal axis labels. This is a great editorial decision. Only coarse trends are of interest here. It's not hard to figure out the relative proportions. Adding labels would just clutter up the display.

By contrast, the abortion question has three answer choices. The middle option is "Sometimes," which is represented by a white color, with a dot pattern. This is an issue on which public opinion in aggregate has barely shifted over time.

The charts are organized in a small-multiples format. It's likely that readers are consuming each chart individually.


What about the dashed line that splits each chart in half? Why is it there?

The vertical line assists our perception of the proportions. Think of it as a single gridline.

In fact, this line is underplayed. The headline of the article is "tracking the political center." Where is the center?

Until now, we've paid attention to the boundaries between the differently colored areas. But those boundaries do not locate the political center!

The vertical dashed line is the political center; it represents the view of the median American. In 1980, the line sat inside the gray section, meaning the median American opposed legalizing marijuana. But the prevalent view was losing support over time and by 2010, there wer more Americans wanting to legalize marijuana than not. This is when the vertical line crossed into the green zone.

The following charts draw attention to the middle line, instead of the color boundaries:

Junkcharts_redo_bloombergpoliticalcenterrightsideOn these charts, as you glance down the middle line, you can see that for abortion, the political center has never exited the middle category while for marijuana, the median American didn't want to legalize it until an inflection point was reached around 2010.

I highlight these inflection points with yellow dots.


The effect on readers is entirely changed. The original charts draw attention to the areas first while the new charts pull your eyes to the vertical line.


Visualizing change over time: case study via Arstechnica

ArsTechnica published the following chart in its article titled "Grim new analyses spotlight just how hard the U.S. is failing in  pandemic" (link).


There are some very good things about this chart, so let me start there.

In a Trifecta Checkup, I'd give the Q corner high marks. The question is clear: how has the U.S. performed relative to other countries? In particular, the chart gives a nuanced answer to this question. The designer realizes that there are phases in the pandemic, so the same question is asked three times: how has the U.S. performed relative to other countries since June, since May, and since the start of the pandemic?

In the D corner, this chart also deserves a high score. It selects a reasonable measure of mortality, which is deaths per population. It simplifies cognition by creating three grades of mortality rates per 100,000. Grade A is below 5 deaths, Grade B, between 5 and 25, and Grade C is above 25. 

A small deduction for not including the source of the data (the article states it's from a JAMA article). If any reader notices problems with the underlying data or calculations, please leave a comment.


So far so good. And yet, you might feel like I'm over-praising a chart that feels distinctly average. Not terrible, not great.

The reason for our ambivalence is the V corner. This is what I call a Type V chart. The visual design isn't doing justice to the underlying question and data analysis.

The grouped bar chart isn't effective here because the orange bars dominate our vision. It's easy to see how each country performed over the course of the pandemic but it's hard to learn how countries compare to each other in different periods.

How are the countries ordered? It would seem like the orange bars may be the sorting variable but this interpretation fails in the third group of countries.

The designer apparently made the decision to place the U.S. at the bottom (i.e. the worst of the league table). As I will show later, this is justified but the argument cannot be justified by the orange bars alone. The U.S. is worse in both the blue and purple bars but not the orange.

This points out that there is interest in the change in rates (or ranks) over time. And in the following makeover, I used the Bumps chart as the basis, as its chief use is in showing how ranking changes over time.



Better clarity can often be gained by subtraction:


Avoid concentric circles

A twitter follower sent me this chart by way of Munich:


The logo of the Munich Security Conference (MSC) is quite cute. It looks like an ear. Perhaps that inspired this, em, staggered donut chart.

I like to straighten curves out so the donut chart becomes a bar chart:


The blue and gray bars mimic the lengths of the arcs in the donut chart. The yellow bars show the relative size of the underlying data. You can see that three of the four arcs under-represent the size of the data.

Why is that so? It's due to the staggering. Inner circles have smaller circumferences than outer circles. The designer keeps the angles the same so the arc lengths have been artificially reduced.



The donut chart is just a pie chart with a hole punched in the middle. For both pie charts and donut charts, the data are encoded in the angles at the center of the circle. Under normal circumstances, pie charts can also be read by comparing sector areas, and donut charts using arc lengths, as those are proportional to the angles.

The area and arc interpretation fails when the designer alters the radii of the sections. Look at the following pair of pie charts, produced by filling the hole in the above donuts:


The staggered pie chart distorts the data if the reader compares areas but not so if the reader compares angles at the center. The pie chart can be read both ways so long as the designer does not alter the radii.


Bloomberg made me digest these graphics slowly

Ask the experts to name the success metric of good data visualization, and you will receive a dozen answers. The field doesn't have an all-encompassing metric. A useful reference is Andrew Gelman and Antony Urwin (2012) in which they discussed the tradeoff between beautiful and informative, which derives from the familiar tension between art and science.

For a while now, I've been intrigued by metrics that measure "effort". Some years ago, I described the concept of a "return on effort" in this post. Such a metric can be constructed like the dominating financial metric of return on investment. The investment here is an investment of time, of attention. I strongly believe that if the consumer judges a data visualization to be compelling, engaging or  ell constructed, s/he will expend energy to devour it.

Imagine grub you discard after the first bite, compared to the delicious food experienced slowly, savoring every last bit.

Bloomberg_ambridge_smI'm writing this post while enjoying the September issue of Bloomberg Businessweek, which focuses on the upcoming U.S. Presidential election. There are various graphics infused into the pages of the magazine. Many of these graphics operate at a level of complexity above what typically show up in magazines, and yet I spent energy learning to understand them. This response, I believe, is what visual designers should aim for.


Today, I discuss one example of these graphics, shown on the right. You might be shocked by the throwback style of these graphics. They look like they arrived from decades ago!

Grayscale, simple forms, typewriter font, all caps. Have I gone crazy?

The article argues that a town like Ambridge in Beaver County, Pennslyvania may be pivotal in the November election. The set of graphics provides relevant data to understand this argument.

It's evidence that data visualization does not need whiz-bang modern wizardry to excel.

Let me focus on the boxy charts from the top of the column. These:


These charts solve a headache with voting margin data in the U.S.  We have two dominant political parties so in any given election, the vote share data split into three buckets: Democratic, Republican, and a catch-all category that includes third parties, write-ins, and none of the above. The third category rarely exceeds 5 percent.  A generic pie chart representation looks like this:


Stacked bars have this look:


In using my Trifecta framework (link), the top point is articulating the question. The primary issue here is the voting margin between the winner and the second-runner-up, which is the loser in what is typically a two-horse race. There exist two sub-questions: the vote-share difference between the top two finishers, and the share of vote effectively removed from the pot by the remaining candidates.

Now, take another look at the unusual chart form used by Bloomberg:


The catch-all vote share sits at the bottom while the two major parties split up the top section. This design demonstrates a keen understanding of the context. Consider the typical outcome, in which the top two finishers are from the two major parties. When answering the first sub-question, we can choose the raw vote shares, or the normalized vote shares. Normalizing shifts the base from all candidates to the top two candidates.

The Bloomberg chart addresses both scales. The normalized vote shares can be read directly by focusing only on the top section. In an even two-horse race, the top section is split by half - this holds true regardless of the size of the bottom section.

This is a simple chart that packs a punch.