Energy efficiency deserves visual efficiency

Long-time contributor Aleksander B. found a good one, in the World Energy Outlook Report, published by IEA (International Energy Agency).

Iea_balloonchart_emissions

The use of balloons is unusual, although after five minutes, I decided I must do some research to have any hope of understanding this data visualization.

A lot is going on. Below, I trace my own journey through this chart.

The text on the top left explains that the chart concerns emissions and temperature change. The first set of balloons (the grey ones) includes helpful annotations. The left-right position of the balloons indicates time points, in 10-year intervals except for the first.

The trapezoid that sits below the four balloons is more mysterious. It's labelled "median temperature rise in 2100". I debate two possibilities: (a) this trapezoid may serve as the fifth balloon, extending the time series from 2050 to 2100. This interpretation raises a couple of questions: why does the symbol change from balloon to trapezoid? why is the left-right time scale broken? (b) this trapezoid may represent something unrelated to the balloons. This interpretation also raises questions: its position on the horizontal axis still breaks the time series; and  if the new variable is "median temperature rise", then what determines its location on the chart?

That last question is answered if I move my glance all the way to the right edge of the chart where there are vertical axis labels. This axis is untitled but the labels shown in degree Celsius units are appropriate for "median temperature rise".

Turning to the balloons, I wonder what the scale is for the encoded emissions data. This is also puzzling because only a few balloons wear data labels, and a scale is nowhere to be found.

Iea_balloonchart_emissions_legend

The gridlines suggests that the vertical location of the balloons is meaningful. Tracing those gridlines to the right edge leads me back to the Celsius scale, which seems unrelated to emissions. The amount of emissions is probably encoded in the sizes of the balloons although none of these four balloons have any data labels so I'm rather flustered. My attention shifts to the colored balloons, a few of which are labelled. This confirms that the size of the balloons indeed measures the amount of emissions. Nevertheless, it is still impossible to gauge the change in emissions for the 10-year periods.

The colored balloons rising above, way above, the gridlines is an indication that the gridlines may lack a relationship with the balloons. But in some charts, the designer may deliberately use this device to draw attention to outlier values.

Next, I attempt to divine the informational content of the balloon strings. Presumably, the chart is concerned with drawing the correlation between emissions and temperature rise. Here I'm also stumped.

I start to look at the colored balloons. I've figured out that the amount of emissions is shown by the balloon size but I am still unclear about the elevation of the balloons. The vertical locations of these balloons change over time, hinting that they are data-driven. Yet, there is no axis, gridline, or data label that provides a key to its meaning.

Now I focus my attention on the trapezoids. I notice the labels "NZE", "APS", etc. The red section says "Pre-Paris Agreement" which would indicate these sections denote periods of time. However, I also understand the left-right positions of same-color balloons to indicate time progression. I'm completely lost. Understanding these labels is crucial to understanding the color scheme. Clearly, I have to read the report itself to decipher these acronyms.

The research reveals that NZE means "net zero emissions", which is a forecasting scenario - an utterly unrealistic one - in which every country is assumed to fulfil fully its obligations, a sort of best-case scenario but an unattainable optimum. APS and STEPS embed different assumptions about the level of effort countries would spend on reducing emissions and tackling global warming.

At this stage, I come upon another discovery. The grey section is missing any acronym labels. It's actually the legend of the chart. The balloon sizes, elevations, and left-right positions in the grey section are all arbitrary, and do not represent any real data! Surprisingly, this legend does not contain any numbers so it does not satisfy one of the traditional functions of a legend, which is to provide a scale.

There is still one final itch. Take a look at the green section:

Iea_balloonchart_emissions_green

What is this, hmm, caret symbol? It's labeled "Net Zero". Based on what I have been able to learn so far, I associate "net zero" to no "emissions" (this suggests they are talking about net emissions not gross emissions). For some reason, I also want to associate it with zero temperature rise. But this is not to be. The "net zero" line pins the balloon strings to a level of roughly 2.5 Celsius rise in temperature.

Wait, that's a misreading of the chart because the projected net temperature increase is found inside the trapezoid, meaning at "net zero", the scientists expect an increase in 1.5 degrees Celsius. If I accept this, I come face to face with the problem raised above: what is the meaning of the vertical positioning of the balloons? There must be a reason why the balloon strings are pinned at 2.5 degrees. I just have no idea why.

I'm also stealthily presuming that the top and bottom edges of the trapezoids represent confidence intervals around the median temperature rise values. The height of each trapezoid appears identical so I'm not sure.

I have just learned something else about this chart. The green "caret" must have been conceived as a fully deflated balloon since it represents the value zero. Its existence exposes two limitations imposed by the chosen visual design. Bubbles/circles should not be used when the value of zero holds significance. Besides, the use of balloon strings to indicate four discrete time points breaks down when there is a scenario which involves only three buoyant balloons.

***

The underlying dataset has five values (four emissions, one temperature rise) for four forecasting scenarios. It's taken a lot more time to explain the data visualization than to just show readers those 20 numbers. That's not good!

I'm sure the designer did not set out to confuse. I think what happened might be that the design wasn't shown to potential readers for feedback. Perhaps they were shown only to insiders who bring their domain knowledge. Insiders most likely would not have as much difficulty with reading this chart as did I.

This is an important lesson for using data visualization as a means of communications to the public. It's easy for specialists to assume knowledge that readers won't have.

For the IEA chart, here is a list of things not found explicitly on the chart that readers have to know in order to understand it.

  • Readers have to know about the various forecasting scenarios, and their acronyms (APS, NZE, etc.). This allows them to interpret the colors and section titles on the chart, and to decide whether the grey section is missing a scenario label, or is a legend.
  • Since the legend does not contain any scale information, neither for the balloon sizes nor for the temperatures, readers have to figure out the scales on their own. For temperature, they first learn from the legend that the temperature rise information is encoded in the trapezoid, then find the vertical axis on the right edge, notice that this axis has degree Celsius units, and recognize that the Celsius scale is appropriate for measuring median temperature rise.
  • For the balloon size scale, readers must resist the distracting gridlines around the grey balloons in the legend, notice the several data labels attached to the colored balloons, and accept that the designer has opted not to provide a proper size scale.

Finally, I still have several unresolved questions:

  • The horizontal axis may have no meaning at all, or it may only have meaning for emissions data but not for temperature
  • The vertical positioning of balloons probably has significance, or maybe it doesn't
  • The height of the trapezoids probably has significance, or maybe it doesn't

 

 


Following this pretty flow chart

Bloomberg did a very nice feature on how drought has been causing havoc with river transportation of grains and other commodities in the U.S., which included several well-executed graphics.

Mississippi_sankeyI'm particularly attracted to this flow chart/sankey diagram that shows the flows of grains from various U.S. ports to foreign countries.

It looks really great.

Here are some things one can learn from this chart:

  • The Mississippi River (blue flow) is by far the most important conduit of American grain exports
  • China is by far the largest importer of American grains
  • Mexico is the second largest importer of American grains, and it has a special relationship with the "interior" ports (yellow). Notice how the Interior almost exclusively sends grains to Mexico
  • Similarly, the Puget Sound almost exclusively trades with China

The above list is impressive for one chart.

***

Some key questions are not as easy to see from this layout:

  • What proportion of the total exports does the Mississippi River account for? (Turns out to be almost exactly half.)
  • What proportion of the total exports go to China? (About 40%. This question is even harder than the previous one because of all the unlabeled values for the smaller countries.)
  • What is the relative importance of different ports to Japan/Philippines/Indonesia/etc.? (Notice how the green lines merge from the other side of the country names.)
  • What is the relative importance of any of the countries listed, outside the top 5 or so?
  • What is the ranking of importance of export nations to each port? For Mississippi River, it appears that the countries may have been drawn from least important (up top) to most important (down below). That is not the case for the other ports... otherwise the threads would tie up into knots.

***

Some of the features that make the chart look pretty are not data-driven.

See this artificial "hole" in the brown branch.

Bloomberg_mississippigrains_branchgap

In this part of the flow, there are two tiny outflows to Myanmar and Yemen, so most of the goods that got diverted to the right side ended up merging back to the main branch. However, the creation of this hole allows a layering effect which enhances the visual cleanliness.

Next, pay attention to the yellow sub-branches:

Bloomberg_mississippigrains_subbranching

At the scale used by the designer, all of the countries shown essentially import about the same amount from the Interior (yellow). Notice the special treatment of Singapore and Phillippines. Instead of each having a yellow sub-branch coming off the "main" flow, these two countries share the sub-branch, which later splits.

 

 

 


A graphical compass

A Twitter user pointed me to this article from Washington Post, ruminating about the correlation between gas prices and measures of political sentiment (such as Biden's approval rating or right-track-wrong-track). As common in this genre, the analyst proclaims that he has found something "counter intuitive".

The declarative statement strikes me as odd. In the first two paragraphs, he said the data showed "as gas prices fell, American optimism rose. As prices rose, optimism fell... This seems counterintuitive."

I'm struggling to see what's counterintuitive. Aren't the data suggesting people like lower prices? Is that not what we think people like?

The centerpiece of the article concerns the correlation between metrics. "If two numbers move in concert, they can be depicted literally moving in concert. One goes up, the other moves either up or down consistently." That's a confused statement and he qualifies it by typing "That sort of thing."

He's reacting to the following scatter plot with lines. The Twitter user presumably found it hard to understand. Count me in.

Washingtonpost_gasprices

Why is this chart difficult to grasp?

The biggest puzzle is: what differentiates those two lines? The red and the gray lines are not labelled. One would have to consult the article to learn that the gray line represents the "raw" data at weekly intervals. The red line is aggregated data at monthly intervals. In other words, each red dot is an average of 4 or 5 weekly data points. The red line is just a smoothed version of the gray line. Smoothed lines show the time trend better.

The next missing piece is the direction of time, which can only be inferred by reading the month labels on the red line. But the chart without the direction of time is like a map without a compass. Take this segment for example:

Wpost_gaspricesapproval_directionoftime

If time is running up to down, then approval ratings are increasing over time while gas prices are decreasing. If time is running down to up, then approval ratings are decreasing over time while gas prices are increasing. Exactly the opposite!

The labels on the red line are not sufficient. It's possible that time runs in the opposite direction on the gray line! We only exclude that possibility if we know that the red line is a smoothed version of the gray line.

This type of chart benefits from having a compass. Here's one:

Wpost_gaspricesapproval_compass

It's useful for readers to know that the southeast direction is "good" (higher approval ratings, lower gas prices) while the northwest direction is "bad". Going back to the original chart, one can see that the metrics went in the "bad" direction at the start of the year and has reverted to a "good" direction since.

***

What does this chart really say? The author remarked that "correlation is not causation". "Just because Biden’s approval rose as prices dropped doesn’t mean prices caused the drop."

Here's an alternative: People have general sentiments. When they feel good, they respond more positively to polls, as in they rate everything more positively. The approval ratings are at least partially driven by this general sentiment. The same author apparently has another article saying that the right-track-wrong-track sentiment also moved in tandem with gas prices.

One issue with this type of scatter plot is that it always cues readers to make an incorrect assumption: that the outcome variables (approval rating) is solely - or predominantly - driven by the one factor being visualized (gas prices). This visual choice completely biases the reader's perception.

P.S. [11-11-22] The source of the submission was incorrectly attributed.


Painting the corner

Found an old one sitting in my folder. This came from the Wall Street Journal in 2018.

At first glance, the chart looks like a pretty decent effort.

The scatter plot shows Ebitda against market value, both measured in billions of dollars. The placement of the vertical axis title on the far side is a little unusual.

Ebitda is a measure of business profit (something for a different post on the sister blog: the "b" in Ebitda means "before", and allows management to paint a picture of profits without accounting for the entire cost of running the business). In the financial markets, the market value is claimed to represent a "fair" assessment of the value of the business. The ratio of the market value to Ebitda is known as the "Ebitda multiple", which describes the number of dollars the "market" places on each dollar of Ebitda profit earned by the company.

Almost all scatter plots suffer from xyopia: the chart form encourages readers to take an overly simplistic view in which the market cares about one and only one business metric (Ebitda). The reality is that the market value contains information about Ebitda plus lots of other factors, such as competitors, growth potential, etc.

Consider Alphabet vs AT&T. On this chart, both companies have about $50 billion in Ebitda profits. However, the market value of Alphabet (Google's mother company) is about four times higher than that of AT&T. This excess valuation has nothing to do with profitability but partly explained by the market's view that Google has greater growth potential.

***

Unusually, the desginer chose not to utilize the log scale. The right side of the following display is the same chart with a log horizontal axis.

The big market values are artificially pulled into the middle while the small values are plied apart. As one reads from left to right, the same amount of distance represents more and more dollars. While all data visualization books love log scales, I am not a big fan of it. That's because the human brain doesn't process spatial information this way. We don't tend to think in terms of continuously evolving scales. Thus, presenting the log view causes readers to underestimate large values and overestimate small differences.

Now let's get to the main interest of this chart. Notice the bar chart shown on the top right, which by itself is very strange. The colors of the bar chart is coordinated with those on the scatter plot, as the colors divide the companies into two groups; "media" companies (old, red), and tech companies (new, orange).

Scratch that. Netflix is found in the scatter plot but with a red color while AT&T and Verizon appear on the scatter plot as orange dots. So it appears that the colors mean different things on different plots. As far as I could tell, on the scatter plot, the orange dots are companies with over $30 billion in Ebitda profits.

At this point, you may have noticed the stray orange dot. Look carefully at the top right corner, above the bar chart, and you'll find the orange dot representing Apple. It is by far the most important datum, the company that has the greatest market value and the largest Ebitda.

I'm not sure burying Apple in the corner was a feature or a bug. It really makes little sense to insert the bar chart where it is, creating a gulf between Apple and the rest of the companies. This placement draws the most attention away from the datum that demands the most attention.